
PROCEEDINGS

OF

ELEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

December 3, 1986

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

FOREWORD

The SoftwareEngineeringLaboratory (SEL) is an organizationsponsoredby the National Aeronautics
and SpaceAdministrationGoddardSpaceFlight Center (NASA/GSFC)and createdfor the purposeof
investigatingthe effectivenessof softwareengineeringtechnologieswhen appliedto the developmentof
applicationssoftware. The SEL wascreatedin 1977and has three primary organizationalmembers:

NASA/GSFC(SystemsDevelopmentand AnalysisBranch)

The Universityof Maryland(ComputerSciencesDepartment)

ComputerSciencesCorporation(Flight SystemsOperation)

The goalsof the SEL are (1) to understandthe softwaredevelopmentprocessin the GSFCenviron-
ment; (2) to measurethe effect of variousmethodologies,tools, and modelsin this process;and
(3) to identify and then to apply successfuldevelopmentpractices. The activities,findings,and rec-
ommendationsof the SEL are recordedin the SoftwareEngineeringLaboratorySeries,a continuing
seriesof reports that includesthis document.

Singlecopiesof this documentcan be obtainedfrom

NASA Scientificand TechnicalInstallationFacility
P.O. Box 8757
B.W.I.Airport, Md. 21240

iii

8:00 a.m.

8:45 a.m.

9:00 a.m.

12:30 p.m.

1:30 p.m.

AGENDA

ELEVENTHANNUAL SOFTWAREENGINEERINGWORKSHOP
NASA/GODDARDSPACEFLIGHT CENTER

BUILDING8 AUDITORIUM
DECEMBER3, 1986

Registration-'Sign-In'
Coffee,Donuts

INTRODUCTORYREMARKS

SessionNo. 1

"DeterminingSoftwareProductivity
LeverageFactors"

"Studiesof SoftwareMethodsand
Environments"

"Designingwith ADA for Satellite
Simulation"

BREAK

SessionNo. 2

"Studying SoftwareEngineeringDocumen-
tation From a CognitivePerspective"

"Empirical Researchon the DesignProcess"

"A QuantitativeAnalysisof the Impact of
ModernSoftwareEngineeringTechniques"

LUNCH

SessionNo. 3

Frank E. McGarry
(NASA/GSFC)

Topic: Researchin Software
EngineeringLaboratory (SEL)

Frank E. McGarry
(NASA/GSFC)

Vic Basili/MarvZelkowitz
(Universityof Maryland)

Bill Agresti (CSC)

Topic: Empirical Studiesof
SoftwareTechnology

Discussant: Jerry Page(CSC)

Elliot Soloway (YALE)

Vincent Shen(MCC)

John Gaffney (IBM)

Topic: SoftwareEnvironments

Discussant" Keiji Tasaki
(NASA/GSFC)

v

3:00 p.m.

3:30 p.m.

5:00 p.m.

AGENDA (Continued)

"The Mothra Software Testing Environment"

"A Value-Chain Analysis of Software Pro-

ductivity Components"

"The Open Architecture of the IDE Tool
Environment"

BREAK

Session No. 4

"Data Diversity-A New Approach to Fault-
Tolerant Software"

"An Empirical Study of Error Detection

Using Self-Test"

"An Experimental Comparison of Ada and

FORTRAN Program Reliability"

ADJOURN

Eugene Spafford (Georgia Tech)

Barry Boehm (TRW)

Tony Wasserman (IDE, Inc.)

Topic: Software Testing

Discussant: Ed Seidewitz

(NASA/GSFC)

John Knight

(University of Virginia)

Nancy I_eveson

(University of California, Irvine)

Amrit Goel (Syracuse University)

vi

SUMMARYOF THE ELEVENTHANNUAL SOFTWARE

ENGINEERINGWORKSHOP

Preparedby

LeonJordan

COMPUTERSCIENCESCORPORATION

January1987

SUMMARY OF THE ELEVENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

The Eleventh Annual Software Engineering Workshop was held

on December 3, 1986, at the National Aeronautics and Space

Administration (NASA)/Goddard Space Flight Center (GSFC) in

Greenbelt, Maryland. This annual meeting is held to report

and discuss experiences in the measurement, utilization, and

evaluation of software methods, models, and tools. The

workshop was organized by the Software Engineering Labora-

tory (SEL), whose members represent NASA/GSFC, the Univer-

sity of Maryland, and Computer Sciences Corporation (CSC).

The workshop was conducted in four sessions:

• Research in the SEL

• Empirical Studies of Software Technology

• Software Environments

• Software Testing

Twelve papers were presented, and the audience actively par-

ticipated in all discussions through general commentary,

questions, and interaction with the speakers. Over 360 per-

sons representing 59 private corporations, 9 universities,

18 agencies of the Federal Government, and 8 NASA centers

attended the workshop.

SESSION 1 - RESEARCH IN THE SEL

Session 1 was moderated by Mr. Frank McGarry of GSFC.

McGarry presented a high-level summary of SEL studies and

results and a profile of areas of future efforts for improv-

ing the quality of software production (Determininq Software

Productivity Leveraqe Points in the SEL). He used a tech-

nological index that measures the level of application of

d_sciplined approaches and discussed leverage points at dif-

ferent stages of the software production process.

L. Jordan

CSC

1 ofl9

The leverage points identified are increasing development

efficiency, decreasing required rework, and continuing the

delivery of reliable software. McGarry discussed the SEL

approach to software quality improvement by listing targets

and mechanisms for each leverage point. For increasing

efficiency, there were improving management and testing

effectiveness and effort distribution using structured tech-

niques, testing approaches, code reading, and automated

tools. For decreasing rework, the major targets were in the

area of design and interface errors using prototyping, test-

ing approaches, structured techniques, and independent veri-

fication and validation (IV & V). To sustain the high

quality of delivered systems, measures, models, and IV & V

are applied to minimize the error rate of delivered software

and decrease system complexity.

McGarry showed the effect of the approach on quality in terms

of the improvement in development effort on recent projects

compared to earlier projects. Rework decreased from 45 to

25 percent of development effort; documentation decreased

from 45 to 35 percent; coding decreased from 20 to 15 per-

cent; and code reuse increased from 15 to 25 percent.

McGarry also discussed efforts to encourage tool use by means

of a software development environment under development.

Future efforts in the SEL will focus on cutting the size of

developed systems using software reuse tools, Ada, and li-

brary languages. Prototyping and test aids will be used to

decrease rework. Environments, formal training, and expert

systems for management support will be used to improve proc-

ess efficiency.

Drs. Victor Basili and Marvin Zelkowitz described some tools

and environments used for software development (Studies o_

Software Methods and Environments). Basili discussed expert

systems by describing the study of Arrowsmith-P, used to aid

L. Jordan

CSC

2 of 19

the software development project manager. The knowledge base

contains historical information about previous projects in a

homogeneous environment. From a baseline of normalized

software metrics, abnormal values are determined and input

to the system along with a set of possible explanations for

the deviant values. Arrowsmith-P was used to explore such

research issues as efficacy of inference mechanisms (rule-

based deduction versus frame-based abduction), method of

knowledge acquisition (top-down versus bottom-up), trans-

portability, and feasibility.

In conclusion, Basili noted that software management has not

evolved to a state where cause and effect are clearly under-

stood or consistent, as shown by the evaluation of

Arrowsmith-P. In comparing results with actual events, the

rule-based system agreed with 1/4 to 1/2 of the correct in-

terpretation. In comparing results with experts, experts

agreed with each other 1/3 to 1/2 of the time, they agreed

with themselves (top-down versus bottom-up) 1/4 to 1/2 of

the time, and the system agreed with the experts 1/4 to 1/2

of the time. The bottom-up and rule-based deduction ap-

proaches performed better and seemed to perform as well as

the experts.

Basili also described TAME, a project aimed at developing a

set of methods and tools supporting a variety of metaprocess

models that can be tailored to specific projects. The proj-

ect will first develop a prototype supporting all kinds of

measurement and evaluation activities and will then inter-

face the TAME prototype to an existing software development

environment. The last phase of the project will develop

guidelines for the design of future environments.

He listed the TAME requirements in terms of purpose, poten-

tial users, and the user view of the system and presented

the architecture as consisting of a PC-based user interface

L. Jordan

CSC

3 of 19

level and mainframe-based evaluation, measurement, and re-

pository levels. Ada dependency occurs at the measurement

and repository levels. The first prototype, scheduled for

completion by the fall of 1987, Will implement a restricted

subset of TAME requirements for the Micro VAX (VMS) and

SUN-3 (UNIX) in Ada for the Ada-dependent levels and Pascal

or C (SUN-3) for the Ada-independent levels.

Zelkowitz described an environment (SUPPORT) consisting of a

set of automated design tools developed in Pascal at the

University of Maryland. SUPPORT has multiple windowing ca-

pability, and he discussed its use in terms of an editing

hierarchy. For potential application to NASA software proj-

ects, SUPPORT can be applied to document preparation in gen-

eral and to code preparation by viewing code as a form of

documentation. It can be used to generate templates for

prologs. He also indicated that structure chart capability

could be built into the system.

Dr. William Agresti of CSC presented a status update and

design experiences on an experiment underway in the SEL to

develop a system in parallel in FORTRAN and in Ada and to

compare the two implementations (SEL Ada Experiment: Status

and Design Experiences). The project, a flight dynamics

simulator for the Gamma Ray Observatory, is expected to be

50 KSLOC (FORTRAN) at completion and is being done on a

VAX-II/780 (FORTRAN) and a VAX-8600 (Ada). The Ada team is

approximately one-half done with coding, and the FORTRAN

team is three-quarters done with acceptance testing. Staff

effort was projected by development phase to be 7.5

(FORTRAN) and 8.5 (Ada) staff-years (including 1.25 staff-

years for Ada training).

In comparing designs in the two projects, Agresti first noted

that the drivers for the FORTRAN project were the legacy of

past designs and schedule constraints. The driver for the

L. Jordan

CSC

4 of 19

Ada project was the desire to use new design methods to ex-

ploit Ada features. The Ada team used the Composite Speci-

fications Model (reported in the Ninth SEL Workshop) to

derive an object-oriented design. The design abstractions

for the FORTRAN project were procedural; those for the Ada

project were state machine and object oriented. Agresti

compared the actual designs in terms of hierarchy (seniority

relations) and operation. He also discussed other approaches

to the problem of converting from a FORTRAN to an Ada envi-

ronment and their consequences. Agresti said that committing

to Ada from project start and resisting the FORTRAN legacy

offer the best opportunities to cast requirements in a more

language-neutral form.

In his conclusion, Agresti noted that project management

issues were encountered during the design phase relating to

differences in cost estimation (What is a module?), develop-

ment products (Where are the structure charts?), milestones

(When is design complete?), and the structure of reviews

(What is presented at CDR?). In the area of staffing issues,

he said that he had positive experience with programmers who

had previous training in Pascal and design abstractions and

exposure to several different programming languages. In the

area of technical issues, he mentioned that it is important

to allocate sufficient time to define Ada types, to consider

the extent of using tasking and generics, and to assess the

degree of package nesting versus library units. He also

said that the Ada team produced a significantly different

design from the FORTRAN team, that there are specific condi-

tions that encourage Ada-oriented designs, and that Ada can

influence every aspect of design, especially management ex-

pectations.

In the discussion that followed, Dr. Elliot Soloway commented

that the FORTRAN language affects the design and that, in

L. Jordan
CSC
5 of 19

the future, Ada will do the same. Agresti noted that Ada

represents a richer language that is more descriptive of the

problem domain and that this represents progress. Basili

noted that the design is in the context of the language and

that, if this influence were not present, it would be a

problem. Dr. Barry Boehm indicated that Ada projects tend

to attract bright people and asked how this was taken into

account in the experiment. Agresti responded that there

were differences with the application and level of experience

and that these differences were part of the experiment data.

He also noted that the Ada team training was in software

engineering with emphasis on Ada, rather than just in Ada.

McGarry added that the early training for FORTRAN projects

was a 1-week course in structured techniques designed by the

University of Maryland and that senior people reinforced

that training throughout the development process.

SESSION 2 - EMPIRICAL STUDIES OF SOFTWARE TECHNOLOGY

Session 2 was moderated by Dr. Gerald Page of CSC.

Dr. Elliot Soloway of Yale University reported on a 2-year

study of software documentation using a cognitive approach

to address questions about the content and format of

documentation and when it should be available (Studying

Software Engineering Documentation From a Cognitive Perspec-

tive). One approach of the study was to understand program-

mers and their expectations by direct observation rather

than to try to understand software. Another approach was to

start the study using small programs. In one part of the

study, programmers were given a 250-1ine FORTRAN program of

14 subroutines and documentation that followed some generic

guidelines. They were asked to make an enhancement and then

were videotaped as they went about the task. In another

phase of the study, new documentation was provided that pre-

sented information about nonlocal, causal interactions

L. Jordan

CSC

6 of 19

(e.g., information about other downstream parts of the sys-

tem that could generate "gotchas").

The most successful strategy employed by the subjects was a

systematic or global strategy that started at the beginning

of the program and documentation and traced the flow of the

entire program using various forms of simulation. This

strategy invariably led to the correct enhancement. How-

ever, this strategy cannot realistically be used for large

programs because it is not worth the effort to understand a

100-KLOC program to generate a 15-1ine enhancement. Other

subjects employed an "as-needed" strategy, where they jumped

immediately to the enhancement area and backtracked when

they thought they needed more information. Adopting this

strategy led to mixed results. More often than not, these

subjects did not come to understand nonlocal causal inter-

actions and thus did not develop a correct enhancement. The

conclusion of this phase of the study was that documentation

must provide information about these nonlocal causal inter-

actions.

Soloway said that the real issue is what information pro-

grammers need and, especially, when do they need it. To

approach this question, he described a second study in which

two programmers were given a 3-foot-high stack of documenta-

tion describing a 60-KSLOC program and were asked to make an

enhancement. They each spent nearly 2 hours reading docu-

mentation, trying to understand what the system did in terms

of the goals of the system and each of the various modules

of the system. These goals were cited in the documentation

but were interwoven with many low-level details that served

to hide the main points and confuse the programmer. He ob-

served that they needed this information first, and the

first manual of the set of documentation was rewritten to

provide it. When the experiment was rerun with the revised

documentation, it took 20 minutes for the two subjects to

L. Jordan
CSC
7 of 19

correctly identify the module where the change needed to be

made.

Dr. Vincent Shen of MCC reported on a field study that was

part of a larger research program to produce a design envi-

ronment (Empirical Research on the Design Process). This

study surveyed 19 large development projects, spending 1 or

2 days at each site, and taping 20- to 40-minute interviews

to record their decision-making and communication process.

Interviewees were system engineers, senior designers, proj-

ect managers, division general managers, testing and quality

assurance personnel, and customers. In the analysis of

eight projects to date, attempts were made to identify key

leverage points, technology transfer issues, and design

problems for consideration of requirements for the design

environment.

Shen identified the top five problems identified by the

analysis as personnel (a project needs good people), commu-

nication and coordination, dealing with uncertainty and

change, design representation and analysis, and technology

transfer (it is difficult to get people to use new technol-

ogy). In the area of personnel, the study revealed that an

effective team is composed of an application specialist, a

conceptualizer (to follow at a high level what is going on),

a boundary spanner (to explain groups to each other), a gate

keeper (to ensure that the team is not influenced by extra-

neous events or technology), a diagnostician, and a feature

manager (who knows what currently needs to be done).

Problems in the area of communication and coordination are

information overload, delay, and deprivation. Dealing with

uncertainty and change is important to reduce wasted ef-

fort. Uncertainty generates "floating issues" (missing and

conflicting information). Change generates new information

L. Jordan
CSC
8 of 19

in the areas of goals, people, technology, policy, stand-

ards, and procedures.

The design representation and analysis process records the

design status and rationale. This area relies on represen-

tation media (e.g., text, graphics, and prototypes) and on

analytical and simulation models. Effective technology

transfer is important to ensure the use of the best tools

available. It is important to be aware of and to assess new

technology and to counter cultural resistance.

In summary, Shen said that when conducting research in large,

complex systems, engineering should focus on the needs in

each of these five problem areas. These needs include sup-

port in role identification and communication breakdown de-

tection; intelligent filters and active probes to support

quick access to relevant information; rigorous methods to

make the specification of floating issues and changes and

their impacts explicit; mechanisms to compare the behavior

of the design with the unclear customer needs; and experi-

ments to test learning models of technology transfer.

In the discussion that followed, Boehm asked whether there

were consistent patterns in how designers organized informa-

tion. Shen responded that pictures were often used and that

80 percent wanted a word processing tool that integrated

graphics.

Dr. John Gaffney of IBM reported on a technology index de-

fined to quantify software quality and development produc-

tivity to determine the degree of using key software

procedures and techniques instituted in the late 1970s and

to determine how well the investment in these techniques has

paid off (A Quantitative Analysis of the Impact of Modern

Software Engineerinq Techniques). Gaffney noted that the

data suggest that higher levels of productivity and lower

L. Jordan
CSC
9 of 19

error density are associated with higher levels of the tech-

nology index.

This software development process technology index is a num-

ber between 1 and I00. It was evaluated for a variety of

large projects totaling more than 3.8 MSLOC and signifies

the degree of 13 process and 2 educational attributes.

These attributes are inspections, structured programming,

structured design language, function model, state machine

model, structured specification language, unit testing, de-

velopment integration testing, function testing, systems

testing, performance and limit testing, user testing, and

management and nonmanagement technology education. Each

attribute was scored by assigning a number from 0 to 16 in-

dicating the degree of technical rigor and the extent of

use. The index value was then taken to be the normalized

sum of attribute scores.

Gaffney showed charts relating productivity and the index

(correlation coefficient +0.697), latent error content and

the index (correlation coefficient -0.582), and latent error

content and productivity (correlation coefficient -0.672).

He indicated that the index is useful in estimating the

likely effects of changes or improvements in technology on

productivity and quality, estimating the risk in applying

some element of technology, and validating estimates of de-

velopment costs. Empirically derived quantitative relation-

ships between the index and productivity and latent error

content can be used to validate estimates of these variables

obtained by other methods. These same relationships may

also be used for prediction to supplement the planning proc-

ess.

In summary, Gaffney said that the index is good for estima-

tion and planning and provides another "handle" on control-

ling software productivity and quality. In the discussion

L. Jordan
CSC

10 of 19

that followed, he said that the method was applied to dif-

ferent types of projects and not just to similar types. In

discussing how the measure captures a shift in technology

(e.g., a shift from FORTRAN to Ada), he said that it captures

the application of well-defined engineering processes such as

design, code inspections, and testing.

SESSION 3 - SOFTWARE ENVIRONMENTS

Session 3 was moderated by Mr. Keiji Tasaki of GSFC.

Mr. Eugene Spafford of the Georgia Institute of Technology

reported on a software testing environment (The Mothra Soft-

ware Testinq Environment) consisting of an integrated set of

tools and interfaces that support the planning, definition,

preparation, execution, analysis, and evaluation of tests of

software systems. The Mothra system provides support from

unit testing through system and acceptance testing. Per-

sistent data are kept. The user interfaces provide a wide

variety of information and information representation (e.g.,

graphics, windowing, animation, and data compression). No

size constraints are imposed by the architecture on the size

of the software system that can be tested in the environ-

ment; comparable functions can thus be applied across a fa-

miliar interface as the software being tested evolves in

size and complexity. Development tools can be integrated

into the testing process, allowing the use of user and sys-

tem tools with which the tester is already familiar.

The environment provides three different aspects: views,

thematic tools, and "shifting gears." The view aspect pro-

vides a way of managing large tests. Displays are used as

the tester's view or window into a larger (virtual) test

context. The thematic tools aspect relies heavily on muta-

tion testing and uses different underlying sets of well-

understood and natural activities that proceed in a specific

sequence through several phases of testing. The shifting

L. Jordan
CSC
ll of 19

gears aspect provides the ability to capitalize on testing

at an appropriate level. Mothra will always spawn machine-

intensive tasks and organize them for execution by a com-

puter resource of appropriate power. In this way, a test

that is justified technically will always be performed un-

less overriding economic limitations prevail.

Mothra is a subenvironment that runs on top of a host envi-

ronment. Versions are operating on the VAX-II/780 and on

ULTRIX on VAX workstations. Explicit operations also allow

Mothra processes to spawn parallel and vectorized processes

for execution by a Cyber-205. In concluding, he said that

two versions have been implemented. An Ada capability has

been designed, and performance studies have been started.

In response to a question comparing mutation testing to

other methods, he noted that mutation testing was developed

about 1977 and that studies on large-scale COBOL and FORTRAN

projects have shown that mutation testing represents a good

testing method with few undetected errors.

Dr. Barry Boehm of TRW reported on the application of an

analytical method to components of the software production

process with the goal of improving software productivity (A

Chain Value Analysis of Software Productivity Components).

The method employs a value chain analysis that examines a

canonical set of cost sources or value activities that rep-

resent the basic activities an organization can choose from

to create added value for products.

Boehm presented a chain value analysis for the software de-

velopment process. Operations consists of management

(7 percent), quality assurance and configuration management

(5 percent), requirements analysis (4 percent plus 1 percent

rework), preliminary design (8 percent plus 3 percent re-

work), detailed design (i0 percent plus 5 percent rework),

code and unit test (8 percent plus 8 percent rework), and

L. Jordan

CSC

12 of 19

integration and test (7 percent plus 13 percent rework).

Infrastructure consumes 8 percent; human resource manage-

ment, 3 percent (Boehm noted this is less that optimal given

the labor-intensive nature of software development); and

technology development, 3 percent (he noted that this is

also less than optimal as an investment to improve produc-

tivity and quality). The breakdown of the operations activ-

ity indicates that the leading strategies for cost savings

in software development involve making individual steps more

efficient (by automated aids to software requirements analy-

sis or testing), eliminating steps (by automatic programming

or quality assurance), and eliminating rework (by early de-

tection or rapid prototyping). He summarized these sources

of savings in a software productivity tree to show how the

various productivity options fit into an overall integrated

productivity improvement strategy.

Boehm noted that the results of a study of rework costs

using 1378 problem reports from two large projects indicated

that 80 percent of the rework cost typically results from

20 percent of the problems. The implication here is that

verification and validation should focus on identifying and

eliminating specific high-risk problems rather than spread-

ing early problem elimination effort uniformly across triv-

ial and severe problems. This implies that a risk-driven

approach to the life cycle, such as the spiral model, is

preferable to a document-driven approach, such as the tradi-

tional waterfall model, and would be a way of focusing on

the high-risk elements of development. In the ensuing dis-

cussion, he emphasized that risk driven versus document

driven does not mean that documentation is absent and that

there is no good way at present to estimate the cost of _ro-

totyping.

Mr. Anthony Wasserman of IUE, Inc., reported on an inte-

grated set of tools based on an open, rather than a closed,

L. Jordan

CSC
13 of 19

architecture (The Open Architecture of the IDE Tool Environ-

mentl. The open architecture is characterized by the avail-

ability of information about all arguments and options for

each tool (providing multilevel access to tools with separate

invocations for different levels), all interfaces (file for-

mats and data base schemas) so that other tools can build

upon those specific interfaces, and common standards (e.g.,

ASCII, Pic, or Postscript). The open architecture allows

user customization of the environment to support local op-

tions and preferences, allows the environment to be extended

by developers and users with minimal effect on the existing

data base, encourages the development of modest-sized soft-

ware components rather than large monolithic tool systems,

and provides multiple interfaces to the same functions to

provide appropriate support to different classes of users.

The tool set reported on is Software Through Pictures, a set

of graphical editors supporting methods for software analy-

sis and design, including structured systems analysis,

structured design, entity-relationship modeling, and user-

specified software engineering.

An effective way to present the user with a coherent view of

the environment is to organize tools and files by logical

level. The Unix system, for example, is organized in three

levels: commands, files, and libraries. At least four

levels should be present in an open architecture: the inte-

grated environment level (starting point for the user and

any global mechanisms needed by tools); tool levels (tools

calling tools, libraries, and utilities represent multiple

tool levels); data repository level (common repository of

data for the integrated tools of the environment, including

programs that manage the repository); and file interface

level (containing text files used by or produced by tools

L. Jordan
CSC

14 of 19

for use by other tools). Several examples of screens pro-

duced by Software Through Pictures transactions were pre-

sented. Wasserman showed how text editors could be used to

modify templates (e.g., substituting an Ada template for a

Pascal template).

In the discussion that followed, he indicated that the open-

ness is derived from the Unix shell structure. He also

stated that, even though the developer specifies the method-

ology, the user should be able to modify it by turning off

specific tool features. In response to a question asking

how this countered Fred Brooke's "no silver bullet" paper,

he noted that the idea behind this tool set is modeling and

communication and not the software itself.

SESSION 4 - SOFTWARE TESTING

Session 4 was moderated by Mr. Ed Seidewitz of GSFC.

Dr. John Knight of the University of Virginia reported on a

new approach to developing fault-tolerant software (Data

Diversity - A New Approach to Fault Tolerant Software). The

two best known techniques for developing fault-tolerant

software are n-version programming and recovery blocks.

Because both techniques rely on multiple implementations

and, presumably, different designs, these are characterized

by design diversity. A new approach relies on the observa-

tion that software often fails at a boundary point in the

input space. Programs may work well for many input values,

survive extensive testing, and then fail on an input case

related to some boundary condition, usually associated with

a transition in the processing algorithm. If, during test-

ing, the special failure case is not generated exactly, the

software usually works correctly. There is a strong impli-

cation that if software fails under certain execution condi-

tions, it is very likely that a minor perturbation of those

L. Jordan
CSC

15 of 19

execution conditions would allow the program to work. This

new approach is characterized by data diversity.

Knight defined a technique for investigating the character-

istics of failure regions in an input space that maps the

two-dimensional cross-section of the multidimensional input

space, indicating failure regions and boundary conditions.

He then presented several examples obtained from 27 programs

that had been subjected to one million test cases. He pro-

posed a method in which data are reexpressed algorithmically.

An algorithm is executed, and the output is tested. If the

output is found unacceptable, the data are reexpressed by

randomly choosing a point from a small circle with the ori-

ginal data point as center, and the algorithm is rerun. He

then showed the relative performance for different circle

radii with one, two, and three retries for several specific

faults in the failure region.

In concluding, Knight noted that some programs rely on the

relative placement of data. Data diversity is inexpensive,

relying on a single implementation of the program, and minor

costs are associated with reexpression and error detection.

Empirical study showed that performance varied widely, that

some faults were tolerated well and some faults not so well.

He noted that data diversity is not universally applicable.

Some data cannot be reexpressed, but in many instances, for

example, noisy control systems and inaccurate sensors, data

diversity should work well.

In the discussion that followed, Knight indicated that this

method should be regarded as a "safety net." That is, after

attempts have been made to eliminate design and other faults

and there is a need to "get through this fault now" during

operation, this method can be used to get the program out of

the fault region.

L. Jordan

CSC

16 of 19

|

Dr. Nancy Leveson of the University of California, Irvine,

reported on an evaluation of the recovery block approach to

testing in which self-tests (acceptance tests) are inserted

in the program (An Empirical Study of Error Detection usinq

Self-Test). She presented the preliminary results of an

experiment that examined the relative effectiveness of

self-test versus voting in detecting software errors. The

experiment used programs developed for a previous n-version

programming experiment that had been subjected to one mil-

lion test cases so that nearly all faults were known.

Graduate students inserted self-tests in eight programs.

Twenty faults were found, four by specification-based test-

ing and eight by code reading. Six new faults were found

that were not discovered in the one million test cases be-

cause intermediate results could be examined and not just

the final output. This is probably also attributable to the

fact that test case strategies could be employed that were

more comprehensive than just examining one output. Leveson

also noted that new faults were introduced by inserting the

self-tests. This is expected any time code is added to a

program.

In concluding, Leveson noted that large differences were ob-

served in individual programmer ability. Other questions

were raised, such as whether the original programmer would

have performed better because of more extensive knowledge of

the software. It appeared that the placement of checks was

important and that specification-based checks alone were not

as effective as using them with code-based checks. Proced-

ures are needed to help formulate checks. No current

fault-tolerant methods guarantee ultra-high software relia-

bility. Current plans for future work include comparing

fault-tolerant and fault-elimination methods, studying the

efficiency of self-checks written by the original coder, and

comparing clean-room and traditional development methods.

L. Jordan
CSC

17 of 19

Dr. Amrit Goel of Syracuse University presented the results

of a study to assess the comparative reliability of Ada and

FORTRAN programs using the number of distinct errors found

as the key reliability measure (An Experimental Comparison

of Ada and FORTRAN Proqram Reliability). A comparison was

also made between intermediate-level and experienced pro-

grammers. Two versions in each language were developed by

intermediate-level programmers, and one version in Ada was

developed by an experienced programmer. The number of er-

rors found during compilation and unit testing were re-

corded. After removing errors found during compilation,

each version was tested with 54 test cases developed by

using a hybrid functional/structural testing methodology

based on one Ada program. Errors detected by the 54 test

cases were removed, one at a time, and the remaining test

cases were run on the incrementally corrected programs.

In presenting the results, Goel noted that the plots of

cumulative error symptoms versus test case number seemed to

follow homogeneous Poisson processes. There were approxi-

mately 70 percent more errors in the FORTRAN programs than

in the Ada programs (written by intermediate-level program-

mers). The Ada version written by the experienced program-

mer had half as many errors as those written by the

intermediate-level programmers. Another set of 120 test

cases was generated using the same testing philosophy as

before, except that they were based on the structure and

code of a FORTRAN version. Results were similar, with a few

additional errors found. An additional i000 random test

cases were run that detected nine new errors in the five

programs. In concluding, Goel indicated that the Ada

programs seem to be much more reliable than FORTRAN and

that, on the average, the Ada programs had 7 percent fewer

errors.

L. Jordan
CSC

18 of 19

I

!
I

I

I
I

I
i

I
I

I
|

I

I
!
I

I
I

I

In the discussion that followed, he noted that the program-

mers chose the program design methods, that the methods were

not systematic, that they seemed more oriented to data flow,

and that Ada features were not exploited. The differences

in reliability seemed to be the result of the Ada compiler

catching several typical FORTRAN errors that survived compi-

lation. In response to a question asking how the results

might differ by using Pascal, Goel said that a version was

also written in Pascal, C, and APL. He conjectured that the

figure would be 20 percent more errors in the Pascal program

than in the Ada program (compared to 70 percent more for the

FORTRAN program).

L. Jordan
CSC
19 of 19

PANEL#1

RESEARCHIN THE SOFTWAREENGINEERINGLABORATORY
(SEL)

F. McGarry,NASA/GSFC
V. Basili, Universityof Maryland/M.Zelkowitz, University of Maryland
B. Agresti,Computer SciencesCorporation

Determining Software Pro0uctivity Leverage Factors in the SEL

Frank _icGarry
Susan Voltz

Jon Valett

Abstract

For ally organization responsible for the development of software
systems, a typical ongoing goal is the attempt to ir_Iprove the
developrlJent process whereby the cost effectiveness of the software
improves. To this end, numerous tools, n_ethods, models, nianagement
techniques, development languages, etc. have been developed and are
evolving. Yet to effectively utilize available techniques, a
development organization must first determine what facets of the
development process would be most conducive to change by determining
what characteristics of the current development process are causing
the most difficulty ana thereby should be addressed with modified
approaches. In other words, a developn_ent organization must deter_ine
what aspects of the current developr,_ent process _,_ayprovide the
greatest leverage (currently consur,_ing high a_lounts of resources) to a
modified approach to the develop_ent process.

The Software Engineering Laboratory (SEL), in its atter,_pt to
assess the relative r,;erits of various development techniques, has r,_ade
efforts to quantitatively determine what characteristics of the

development process, within one local environr, lent, would provide the

most potential for i_proving the overall development effort. By
applying appropriate techniques to the identified areas, it is assumed

that the most effective adjustment would be r_ade.

To this end, the SEL has compared characteristics of the

developn_ent process in early phases of the overall SEL study process
(1978-1981) with the characteristics of n_ore recent efforts (1984-

1986) to determine:

I. What leverage points exist?

2. Has the application of selected techniques
affected the profile of the developr, ent effort?

3. Has the developn, ent process improved?

This paper describes what leverage factors have been determined and

how these factors have changed over 8 years.

F. McGarry
NASA/GSFC
1 of 22

1.0 Background

In 1977, the Software Engineering Laboratory (SEL) of NASA/GSFC

began studying the characteristics of the software development process
within the flight dynamics environment at Goddard. The SEL is

organized as a partnership between NASA/GSFC, the University of MD,

and Computer Sciences Corporation [I]. Each organization has been an

integral part of the study effort from the inception of the SEL.

The approach taken to studying production software projects has
included collecting detailed software development data from numerous

projects as each of the projects utilized specific techniques in the

software development effort.

1.1 Study Process (Chart I)

The 3 step process to which the SEL approached the overall
studies includes:

I. Determine the basic characteristics of the development

process in the production environment (productivity, life

cycle effort distributions, error rate, methods used,

etc.). This step identifies the potential 'Productivity

Leverage Factors'.

2. Apply modified developr_lent approaches to similar

development projects (new tools, languages, methodologies,

etc.) and extract detailed information on the development

process.

3.Compare and assess the impact of applying the modified

approach by observing changes to the measures of

interest (e.g. productivity).

1.2 Projects Studied (Charts 2 and 3)

In carrying out the approach to both identifying the leverage

factors and measuring the effect of available software development

approaches, the SEL has utilized over 50 flight dynamics development

projects at NASA/GSFC for detailed study. Detailed development data

has been collected from each of these projects while numerous
development n_ethods, tools, etc. have been selectively applied to

these projects. Several general results from the technology

evaluation efforts were reported at the 10th Software Engineering

Workshop in 1985 [2].

One approach that was utilized by the SEL in it's atten_pt to

measure software techniques, was to define a 'Technology Index' [3]

which was based on the level or extent to which known disciplined

methods were applied to each project. This index characterizes the

use of over 60 methods in developing the software and essentially is

one organization's attempt at defining the level of discipline applied
to the effort.

F. McGarry
NASA/GSFC
2 of 22

t

I

I

I

I

i

I

I
!

i
I
I

I

I
I

I
I
Ii

Based on 14 projects of similar size and conlplexity, one of the

points the SEL reported was that it could not show a significant

correlation between productivity and the 'technology index', but it

did show a very high correlation between reliability (errors/SLOC)

and technology index. These relationships were not trends over time,

but only over level of appliec technology. The conclusion is not that

a more disciplined approach fails to improve productivity. The result
merely states that for the SEL definition of 'technology index', no

measurable i,_provement in productivity was apparent in the statistics

from the sampled projects. This could possibly indicate:

I. The particular methods defined are not measurable to the

degree required.

2. The technique was not applied correctly by the

development team.

3. The technique studied was not appropriate for the
environment used.

Another view of these projects was to look at the trends of
measures of importance over tinge.

2.0 Leverage Factors, 1978-1981 (Chart 4}

By studying these projects, the SEL has additionally attempted to

detern_ine what specific elements of the software development process

were affected over time by efforts made to improve key factors such as

productivity and reliability. That is, if productivity was improving,

where was the gain made (faster coders? less design requireC? less

testing?}? The SEL ha_ put effort into developing profiles of early

projects so that specific weaknesses could be identified and

addressed. Although ozJe of the goals of the SEL has been to measure

the impact of specific software techniques, the end goal is to

identify key leverage factors, then apply appropriate techniques to

gain maximum improvement to the software as measured by some parameter

of interest (e.g. productivity). Several interesting points of the

_evelopr_ent projects which were studied in the early time period

(1978-1981) are noteworthy.

2.1 Distribution of Developr_,ent Effort (Chart 5)

The detailed data fror,_ these earlier projects showed so_,e

statistics that were expected or not at all unusual while some of

these figures have lead the SEL to concentrate r_ore or less on certain
aspects for improving software cost effectiveness. The distribution

of n_anpower effort over the life cycle of development (beginning at

requirer,_ents analysis and ending with completion of acceptance

testing) has shown a fairly even distribution between design (27%},
coding (25%) and testing (28%) with 'other" (which includes meetings,

travel, training, etc.} accounting for about 20%. Of the 25% devoted
to the coding phase approximately 15% was actually attributec to the

writing or entering of code. This point has led the SEL to temper its

efforts at concentrating on il,proving the 'coding' process since the

'leverage' gained fror,_ improvement here may be relatively limited.

F. McGarry
NASA/GSFC
3 of 22

A second point worth noting, is that when the SEL analyze_ ti_e

effort attributed to changing and fixing software during the

developn, ent process, (because of incorrect designs that had to be

changed, or- errors that were created during the design or code phase,
or because of changing or _,isinterpreted requirements leading to

changes in design or code) it found that approximately 40% of the
total r;;anpower spent Curing development was attributed to this

'rework' effort.

This effort Cata was based on 3 projects tl_at had very good

historical infori_:_tion during the earlier tir_,eframe of 1978-1981.

Data sources included:

o SEL change/error reports

o Specification change reports
o Change histories of on- line source code

By studying in detail representative changes, it was found that the

average change to code required approxir_ately I/4 of a persons day and

the average change caused by a design or spec change required

approximately I/2 of a person day. Data for planned enhancements or

planned changes were not included in the con.putation.

Several other _otential leverage factors were identified by

analyzing this early data:

I. ApproxiI_ately 30% of the total development effort was

spent on testing. If this process could be made more

efficient, there was potential for improved cost

effectiveness. Testing included unit tests, systeri_s tests

and acceptance tests. Although n;any people consider code

reading to be a form of testing, this 30% value, did not

include that particular effort.

2. In the 1978-1981 time frame, developers spent nearly 50%

of their time docun_enting. This effort includes writing

such documents as design descriptions, test plans,

user's guides, system description and code commentary.

The value was approxin_ated by con_puting a page count of

docunJents produced for each project studied and

developing an average time per page by examining detailed

records of the project development data and by observing

and interviewing authors. The figures used included:

o 2 person hours per page of documentation.

o 3 person miD__ per line of code comn_entary.

To the figures, the total 'tech publication' charges

and secretary charges were added.

F. McGarry
NASA/GSFC
4 of 22

3. In looking at detailed history of the M & 0 phase of
delivered software, it was found that the error rate was

approxin:ately 0.6 errors/1000 SLOC. This error rate has

been deemed to be highly acceptable for this environment.
For this reason, no concentrated or extended efforts

woulo be put forth in attet_pting to improve the

reliability of the delivered software. Therefore, the

reliability of delivered software was not targeted as a

major leverage factor" in trying to improve the

development process.

2.2 Early (1981) Approach to Quality Impr'over,lent (Chart 6)

Once the SEL studied in detail the software development profiles

of projects developed in the 1978-19_I timefran_e, three general goals

for improving the software process were developed:

I. Increase efficiency of the development process: Two of

the major manpower consumers had been i_entified as

testing (30%) and documentation (40%). By identifying

methods, tools and approaches that could possibly

increase efficiency in these areas, as well as increase

efficiency throughout all the development phases, there

was potential for improving the cost effectiveness of the
overall process.

2. Decrease Rewcrk: Since its inception, the SEL has
conducted numerous studies on the nature and cause of

software errors (ref. 4, 5, 6) and changes during the
development process. By isolating characteristics and

general causes that may be major drivers for rework
effort, the SEL has anticipated that appropriate methods

and effective tools could address this major leverage

factor. Past studies have shown thet neither syntax
errors (<3% of total errors) nor errors in software

specification (<5%) were major problem areas, but software

design errors and interface errors were major

contributors to the errors in the flight dynamics systems.
As a follow-up to the studies of software errors, the SEL

has conducted additional experiments with several methods

and approaches that could potentially address the types
of errors created. These studies have included:

o Study of Software Verification Techniques
[4]

o Characteristics of Software Prototyping
[5]

o Assessment of an Independent V & V techniques
[6]

F. McGarry
NASA/GSFC
5 of 22

3. Sustain High Quality of Delivered Systems: Although

original studies showed that GSFC was not spending an

appreciable effort in the n_aintenance/error fixing process

for the delivered system, (therefore not a major leverage

factor) it has been a goal, that by continually utilizing

and improving the development process, the developed

system should sustain the high level of reliability that
had been measured originally. Therefore the reliability of

delivered software would continue to be used as a measure

of the effectiveness of n_odified approaches to software

development; but improved reliability of delivered
software was not defined as a major point of concern for

the original SEL efforts.

3.0 Recent Trends in Productivity and Reliability (Chart 7)

In attemptir_g to interpret recent trends of software development
effectiveness, the SEL has studied two key factors, productivity

(LOC/day) and reliability (errors/KLOC), over the past 7 or 8 years as

efforts were put forth in experimenting and applying techniques

directed at gaining leverage from key places in the development

process. In determining the productivity and reliability trends, 6

projects of similar complexity and size, which were developed over the

8 year period (1978-1986), were studied. The data showed that

productivity first _ecreased for several years then continually

increased over the past 6 years.

The reliability of the developed systems has also continually

improved, where the particular measure is computed as the number of

errors per KLOC found from system testing through acceptance testing.

This error rate is a strong indication of the amount of rework that

would be necessary during the development process. The rate has

decrease from 7 or 8 errors per 1000 SLOC to under 6 errors per 1000

SLOC. The error rate reported during maintenance also has shown a

slight improvement.

In looking at the trends over the 8 year period, the SEL is still
atter_pting to ascertain why the productivity of systems in the 1978-

1980 time frar_e was extremely high as compared to systems built in the
1981-1983 tinle frame. Two explanations are being pursued as possible

drivers:

I. _Ltgh _vailability of _xperienced _ Between

1978 and 1980, six major flight dynamics general

systems were completed. This unusually high
nuuber assured a large number of experienced people

were available for the efforts and as one system

was nearing completion, the wealth of experiences
and expertise could be shared on newer efforts.

F. McGarry
NASA/GSFC
6 of 22

2. Strong _JL_ in D___ment _ethodologies. Early in

the SEL study efforts, many of the project personnel were

put through specific formal methodology training in

prepration fcr the measurement of such technologies as

structured programming. Additionally, senior staff

members continually reinforced this training during the

development process and worked closely with development

personnel to assure that development methods were
understood and were being utilized. Sonle SEL researchers

feel in later years, the strong reinforcement of training
had decreased, possibly leading to lower productivity.

3.1 Revised Leverage Factors, 1984-1986 (Chart 8)

Following the analysis of software development profiles of an

early timeframe (1978-1982) and the identification of potential
leverage factors for that era, the SEL then compared results to those

of a more recent tiniefranle (1984-1986). The goal of this comparison

was to determine how the identified leverage factors have changed over

time and to identify new leverage factors for improving the software

development process in the future. The results of this comparison
identified changes in the distribution of development effort in three
areas:

I • Rework: Effort attributed to changing and fixing
software during the developn_ent process has decreased in
recent years. Since this effort, however, remains a

significant percentage of the total development effort

(25%-35%), rework continues to be a key leverage factor

in improving the software development _rocess.

2. Documenting: Recent years have shown a decrease in

effort relatea to writing software development documents

and code commentary from over 45% in the earlier

timefra_e studied, to 35% of the total development effort

in the recent timeframe. The decrease ir_ documenting

effort may be attributec to the production of fewer

repetitive documents during the software developr_ent

process or the higher user of support tools for

developing documents. Through experience and the

development of similar software systems over the pa_t
years, the understanding of what documents are essential

to the develop_zent process has become more clear.

3. Coding: Effort involved in coding software has decreased

slightly over the past few years. Coding effort remains

a small percentage of the total developi_Jent effort an6

may not be lowered much further. Therefore, improvement

efforts in the area of software coding would not provide
much leverage in in,proving the overall development process.

F. McGarry
NASA/GSFC
7 of 22

In addition to a decrease in rework, cocumenting, and coding

efforts, the SEL discovered a recent increase in the percentage of

code reused in the development process. This favorable increase r,_ay

be attributed to an increased awareness of code reuse as a key

leverage factor. However, given the homogeneity of the developmer_t
environment studied by the SEL, code reuse is still relatively low.

Therefore, code reuse remajr_s an in_portant leverage factor for

improving the cost effectiveness of the software development process
within this organization.

3.1.1 Software Development Environment (Charts 9 & I0)

An additional area in which leverage may be gained in improving

the development process may include the use of software development
environments. The SEL discovered that many of the tools available to

the developers to aid in the software developn, ent process, were not

being used as heavily as anticipated. Recent studies in the SEL,
however, have shown that increased tool usage has a positive impact

both on productivity and on the maintainability of development

projects (ref. 7). Therefore, the SEL has begun to encourage the use
of a development environment known as the Software Development
Environment (SDE). SDE is a menu-driven, integrated set of

development tools intended to aid developers in the IBM environment.

SDE encourages the methodology deemed to be effective in its

production environment and will hopefully increase the use of

development tools.

3.1.2 Environment Experiment

As a first experiment with SDE, the SEL has compared effort and
error data of two development projects, one developed under SDE and

one not, to analyze the impact of this development environment.

Preliminary results show that productivity and reliability of the

software developed using SDE significantly improved over the system

developed without SDE. In addition, a user-survey indicateC that

users of SDE, particularly newer developers, felt software quality

improved by using SDE. These preliminary results indicate to the SEL
that further work in environments could be an important leverage

factor of the future.

3.2 Revised (1986) Approach to Quality Improvement (Chart 11)

In studying and comparing the recent software development profile
to that of an earlier development era, the SEL has identified areas in

which the development environment studied could most benefit from

improvement efforts. The revised target leverage factors address the

following goals:

F. McGarry
NASA/GSFC
8 of 22

I. Reduce the size of _ _ms in order to increase
the reuse of existing software. The approach to

attaining the highest _oftware reuse potential may
include selecting and applying appropriate tools,

methodologies, or languages that promote the reuse of

software (e.g. Ada).

2. Decrease the effort _ to rework in order to

further decrease the amount of time spent changing and

fixing software errors. Although the percentage of

rework effort has declined recently in the studied

environment, continued enlphasis on this leverage factor

could produce a gain in productivity and reliability.

Possible approaches to meeting this particular goal may

include improving design methodologies, prototyping, and

utilizing testing aids.

3. Further _ the overall _ of tile

development process in order to decrease the dependency

on people and experience in software development. In
order to more easily learn from past cevelopment and

management experience, however, developL_ent and
management environnents could be utilized, as well as

expert systems that capture devclopers' or managers'

expertise.

By concentrating on the revised leverage factors targeted by

the SEL, an improvement in the cost and quality of developed
software could be realized in the near future.

F. McGarry
NASA/GSFC
9 of 22

REFERENCES

I. Software Engineering Laboratory, SEL 81-104, The SoftwgEe

_nginge_ng L__, D. N. Card, F. E. HcGarry, G. Page, et.

al, February 1982.

2. McGarry, F., 'S__ _ ___e_me__ in the Software

Engineering _ (SELl', Proceedings of the Ter_th Annual Software

Engineering Workshop, Decer,lber 1985.

3. SEL 86-002, M___f_]ig and_V__jJlg Software Technolng_, D.

N. Card, F. E. McGarry, J. Valett, to be published.

4. SEL 85-001, Comparison of _a_f__ VerificajLLQn T____A___,

D. Card, R. Selby, F. E. McGarry, et. al, April 1985.

5. SEL 86-004, _ Software Engineering _apers: Volumg IV,
November 1986.

6. SEL 81-110, Eva]_ of an IndepenGent Verification and

]_ (IV&V) Methodology for _ _D__i_q_, G. Page, F. E.

McGarry, and D. N. Card, June 1985.

7. McGarry, F.; Valett, J.; and Hall, D., 'Mgg_i_g _e _g_

of Co_ter Resource ___ on the _Lf__wgr__ Development Process

and Product', Proceedings of the Hawaiian International

Conference on Systems Sciences, January 1985.

F. McGarry
NASA/GSFC
10 of 22

THE VIEWGRAPHMATERIALS

FORTHE

FRANK McGARRYPRESENTATIONFOLLOW

Z
Z
<t

Z
UJ
>
UJ
_J
I,I

m

m

U.
0

0

_0
00

n-
W
m

UJ
0
uJ
0

m

a w
0:=
E _"
D. Z

roll

F. McGarry
NASA/GSFC
11 of 22

0

W

n-
0
U.
11.
111

.J
W
O_

W

z0
>
Z

W

0

17
0
...J
W

C]

0
W

0

m

Zo
W _j

w I

LU

<

0

121
Z
<

I--
0

a.--

--0

goZ
7-
0

@

t'N
0
0

en

F. McGarry
NASA/GSFC
12 of 22

m

a

I,_ '_.
V

ill

0

F-
Z
iii

n
0
..J
III

0

III

rr

n
iii
rr

iii

0
0
..J

0

7"
0
w r7

0 i.- w
o3 I- OC

rr 0
rr <
0 , Z
Ii w 0
cO 7-

n o3 l-
w < ' d
_ m " d

co 0 _i
I-- '_ '

n iii Z
w m- 0

I- ..j

FF _0 rr rF
n r_<_ w w

coo.. 0 0
• • • •

A

O0

Z
111

m

rr
iii
n
X
III

Z
m

0
III

V

0
III

Z
II
iii
n

00
I

0
0

I

D
iii
n
0
._J
III
>
uJ
1"7

0 IJJ IJJ

n _ 0
0 0
-- <
111
> n-" i,i
iii n 0
n I-- n"

Z
cO w 0

FF iii
< w
n (.9 _
Z < F-

< z m

! I I

F. McGarry
NASA/GSFC
13 of 22

Z
O
m

O

¢1
O
tv
a.

¢g)

O
U,I

0
n."

0

0
rr
n
n

CO
I--.-
Z

0
Z

0
rr'

n"
0
U.,

or)

0

!11 a _ n" U.I

znn _ I.-wo_ __
-J 13. n" "- n"
J 000_111 O_

LU_a3 0
I--- n-'
Z _LLI_

03 .-J 13_
w 0::3::3 n
0 a,,_O
13.. WOO W a

z oo
__ I-- d
_ IZ n" ONz w
W • • • _ • • •

0 0

G.
0
D

I

W
Z
m

U_
111
n-

I

LU
rr

O3

W
zs

I

>-
_J
O_
13_

c5
8

F. McGarry
NASA/GSFC
15 of 22

.J

Z
I.I.I

Z I_
O©

w w

w n- F-

0 W 0

E_

F. McGarry
NASA/GSFC
16 of 22

W

0
nr"
n

i
?
o

0
rr

0 0 0 0 0 0 0 0 0 e 0 0 0 0 0 0

v oo_
W_ _ o7_ _ _o oo

o _ _ _ ,,, ,,,

=_=_i "- _ "_

_ i _"
_ _ -_
oo i_ z_

rr C.) t- o
0 ILl
Z 0 _

0

,6

F. McGarry
NASA/GSFC
17 of 22

il /

V

/ 1, 0
0 " _o _ 0_ooqs)I/SUOUU3

_ °,,- ow_ z o

z: _

N - ,,,o

Z I'- Z

w 0 _,-, 0

AVCI/O07£

r-:

[..l.

F. McGarry
NASA/GSFC
18 of 22

|

|
|

I---

0
IJ..

I.-.-

II >
0
13::
O.

m

..=I

.<
:::)
0

Grj
I.I.
0
{/)
I--

.<
o.

LI.I

0
cn

O0

| !

L

II II

0
0
0

0

Z

0
121

5_
n"
0

iiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiliiiiliiiiiiiiiiiiii!iiiiiiiiiiilliiiiiiiiiii

8_

0 0 0

11:10343 1N31_clO73A30 -10 %

8

0

F. McGarry
NASA/GSFC
19 of 22

o

!
0

<:C

F. McGarry
NASA/GSFC
20 of 22

_1
!11

I11

i-

z

8
o

o
Ill

a
0 w
_! CO
0 a D z
o l_'w :c -

w 0 0 0 z
ch T Z rr 111co 0
v _] "- O- la_ W Jr'

N _,NN N-_NN N _ -°
_Oo° _ _,-_ ._

LL! 0 k" 09 n" ._1WT
_ 0 z n" o_ < z_

,7- • • e

F. McGarry
NASA/GSFC
21 of 22

o
O

=¢

,¢
!--

O_

V

O
I11
Ca0

W

,,, ,,,

•_I _- < ,,
• • • • • • • •

_8
Z O_r_" WW

_ _ °°_I_ _ __o _8
_ ,,,,,,_

W
I--

>-

0
W
O_

!I
r7
U-
o
UJ
N

0

r_
0

CC

UJ

Z

"7
W

0
Z
W

0
LL

LU

0')
O0
W
0
0

LU
(/)

rr
0

rn

F. McGarry
NASA/GSFC
22 of 22

I
I

l
I
I

I

I
i
i

n
I

I
I

i
I
i

i
i

i

TAME - Tailoring A Measurement Environment

Victor R. Basili and H. Dieter Rombach

Dept. of Computer Science

University of Maryland

College Park, MD 20742

More and more project environments suffer from lack of sound knowledge concerning the
impact of software process and product characteristics on software quality and productivity. Such

knowledge would be important for (1) designing the software process appropriate for achieving
particular quality and productivity goals in a given project environment, (2) controlling the
fulfillment of given quality and productivity goals throughout the development process based

upon quantitative data (as far as possible), (3) providing proper feedback into the ongoing project
allowing to take actions where necessary, and (4) allowing post-mortem evaluation of projects for

the purpose of learning for the next projects. All these activities depend on sound data collection,
validation, and evaluation procedures. This need becomes especially obvious in the current situa-
tion of many environments making the transition form traditional languages and related metho-

dologies to Ada and supporting methodologies. In this context, many open questions need to be
answered, e.g., whether or not Ada language features and concepts are used appropriately, and
how Ada projects should be managed and supported by methods and tools.

For all stated reasons it is necessary to measure and evaluate the quality and productivity
of process and product aspects of projects. This can be done by either conducting ease studies of
ongoing Ada projects or experiments in controlled environments. In both cases concrete measure-

ment and evaluation goals need to be established in a systematic way, measures need to be

derived that can help in achieving these goals, and the necessary data need to be collected, vali-
dated and interpreted. We have established a methodology that allows us to perform these activi-
ties in a systematic way. However, the methodology must be supported by automated tools in

order to allow on-line feedback of evaluation results back into ongoing projects. In the long-run,
the tools for on-line feedback should be part of each Software Development Environment (SDE),
since these environments should provide information to management, development, quality
assurance personnel, and others, supporting their decision making processes. Such information
would be based on data from the project of interest as well as from previous projects in the same
and other environments.

In this paper we present and discuss the TAME (Tailoring A Measurement Environment)
project which aims at the development of a prototype measurement and evaluation environment

that supports all the previously mentioned activities including the process of setting up measure-
ment and evaluation goals and deriving measures. The prototype currently under development
does not interface with an SDE; however, it is designed for being integrated into an SDE in the
future. The long-term goal of the TAME project is, however, to come up with guidelines for

designing SDEs of the future. We do not believe that evaluation can simply be added to existing
SDEs. We believe that SDEs of the future will be driven by TAME-like features allowing for the
tailoring of the appropriate software process to project goals and environment characteristics, set-
ting up of measurement and evaluation milestones, and establishing feedback lines. Once the

appropriate software process is selected, state-of-the-art tools for performing defined activities
such as requirements analysis, design, coding, testing, etc. will be plugged in depending they can
provide for the data asked for by the defined process model.

The TAME prototype provides means for collecting, storing, and validating data, computing
measures, and interpreting computed values in the context of particular evaluation goals.

A macroscopic view of the TAME architecture shows the system divided into four hierarchi-

cally organized layers (from top to bottom): (1) the user interface level, (2) the evaluation level,
(3) the measurement level, and (4) the data repository level.

V. Basili

Univ. of Maryland
1 of 24

1.TheUserInterface Level supports the interaction between users and TAME. The TAME proto-

type will provide a menu driven user interface. In addition, the user interface level contains a
tool for setting up the individual measurement and evaluation goals, questions, and measures
for each user.

2. The Evaluation Level implements the appropriate context for a particular evaluation session,

and contains a processor for running evaluation sessions. The processor performs the evaluation
according to the particular needs of the user reflected by a specific set of goals, questions, and
measures previously created by the user interface level. In addition, the evaluation processor

needs to know the specific authorizations of the user in order to know which functions can be
performed by this particular user. The processor also provides analysis functions which, i.e.,
tell the user whether certain measures can be computed based upon the data currently available

in the data repository. This analysis feature of the processor is used during the creation phase
of goals, questions, and measures, as well as during the actual evaluation phase according to

previously established goals, questions, and measures.
3. The Measurement Level consists of tools for computing measures. The first measurement tools

under development are for determining static source code characteristics, data bindings, and
structural test coverage. This level is the only level truly dependent on the concepts and

languages used for documenting requirements, designs, code, etc. For example in the case of
Ada, due to the variety of new language concepts, such as generics, packages, tasks, and excep-
tion handling, terms like 'module' or 'data binding' have to be redefined.

4. The Data Repository Level provides the infrastructure for various types of evaluation. This
level allows storing and retrieving all kinds of software related data, including evaluation goals,

questions, and measures, and authorization data. This level should be as independent as possi-
ble of a particular data base management system or a concrete data base structure. It should
be implemented as an abstract data type hiding all these implementation details. This data
base is designed for all types of information accumulated in Ada projects, not just the informa-
tion created by measurement and evaluation tools. It also should be capable of interfacing to an
existing SDE. From this point of view, this data repository might evolve into a prototype SDE

data repository.

The TAME project status is currently as follows: The architectural design of TAME is com-
pleted and prototypes of three measurement tools as well as the data repository and the user
interface and evaluation level are being implemented. The TAME prototype is to be implemented

in Ada (as far as the measurement level is concerned, because we are aiming at Ada projects with
this first prototype) and C (for all other, language-indepedent, levels). TAME will run on a distri-
buted environment, work stations will host instantiations of the user interface level, a main-frame
will host all the other levels. Currently we are using SUNs (SUN-3/UNIX) and a MicroVAX/VMS.

The Tame prototype stand alone will provide a useful vehicle for investigating Ada related
research questions. Integrated into an SDE, it might allow on-line feedback into ongoing Ada pro-

jects.

V. Basili

Univ. of Maryland
2 of 24

I

I
I

I
I
I
I

I
I

I
I

I
I

I
I
I
I

I
I

TAME

:_ i _ _ :!i I i _ !_

User Interface Level !i!: ii'::i!ii

: : !: :i: i ii

i i'ii_ii_i_i_ii_iii_:iiiiiiiiii_i_ii : ii _ii_!ii!_i_il ,_ ,, i_i: ilii

-iiii!!:iiiiiii:i i_ii _ :iiiiiiiiiiiiiiiii_iii iiil _iiii,_::i_,_: iiiii!iiiii!iiiiiiiiiiiii!iiiii_i:_:!i:::ii!ii-

;ilMe urementiLevel:i!i
- :i:i i!:i21 :i:i iiiiiiiiii!:iiiiii_iiiiiii!i!ii ii !!i!!-

_ii_i:_i!ii::: _::ii _ _::_.::i_iii:_ _ :_ _i.:: _ • i i: ,_:ii::i:i! _: :_ ! _ _

H

:!!i!i!i!!ii:::! !!!i!!!iii!}i: i: :! !!•: !!! !:!!!!i !!!!!!!!! : i! !i •}

V. Basili

Univ. of Maryland
3 of 24

A ComparativeEvaluationof Methodologiesfor Developing
ExpertSystemsto Aid in SoftwareEngineeringManagement*

ConnieLoggiaRamseyandVictor R. Basili
Universityof Maryland

ABSTRACT

Although thefieldof softwareengineeringis relativelynew,it canbenefitfrom the
useof expertsystems.Four prototypeexpertsystemshavebeendevelopedto aid in
softwareengineeringmanagement.Giventhe valuesfor certainmetrics,thesesystems
will provideinterpretationswhichexplainany abnormal patterns of these values during
the development of a software project. The four expert systems, which solve the same

problem, were built using two different approaches to knowledge acquisition, a bottom-

up approach and a top-down approach, and two different expert system methods, rule-
based deduction and frame-based abduction. A comparison was performed to see which

methods better suit the needs of this field. It was found that the bottom-up approach

lead to better results than did the top-down approach, and the rule-based deduction sys-

tems using simple rules provided more complete and correct solutions than did the
frame-based abduction systems.

* Research supported in part by the National Aeronautics and Space Administration

Grant NSG-5123 to the University of Maryland. Computer support provided in part by

the Computer Science Center of the University of Maryland.

V. Basili

Univ. of Maryland
4 of 24

THE VIEWGRAPHMATERIALS

FOR THE

VIC BASILI PRESENTATIONFOLLOW

TAME:

TAILORING A MEASUREMENT ENVIRONMENT

Victor R. Basili

H. Dieter Rombaeh

Department of Computer Science

University of Maryland

College Park, MD 20740

V. Basili

Univ. of Maryland
5 of 24

INTRODUCTION

• TRANSITION PROBLEMS:

HOW DO WE

- use Ada concepts properly?

- manage projects properly?

- support Ada projects by methods and tools properly?

- support transition to Ada properly?

• SOLUTIONS:

- evaluate various quality/productivity aspects of Ada

processes/products

- allow for tailoring processes to specific project needs

- provide tool support

- make measurement g_ evaluation an integral part of an

SDE

(ADDS A NEW DIMENSION TO SDEs)

TAME (TAILORING A MEASUREMENT ENVIRONMENT)
V. Basili

Univ. of Maryland
6 of 24

INTRODUCTION

PROJECT PHASES:

DEVELOP A PROTOTYPE SUPPORTING

ALL KINDS OF MEASUREMENT &

EVALUATION ACTMTIES

(goal/question/metric paradigm)

INTERFACE TAME PROTOTYPE TO AN

EXISTING SDE

(providing on-line feedback into development

activities)

DEVELOP GUIDELINES FOR THE DESIGN

OF FUTURE SDEs

(support various process models,

tailor process models to project goals and

environment)

TAME (TAILORING A MEASUREMENT ENVIRONMENT)
V. Basili

Univ. of Maryland
7 of 24

MEASUREMENT HISTORY (AT UMD)

- The frequent incorrect usage of methods and tools is not

known (NO FEEDBACK) [Basili, Gannon, Yeh,

Zelkowitz, ..]

- Single metrics are not sufficient [Basili, Turner]

- We have to design experiments thoroughly [Basili,

Reiter]

- We can't just use other people's models (TAILORING)

[Basili, Freburger]

- Meta Models and Metrics are suited for transition

purposes [Basili, Bailey]

- We have to associate interpretations with metrics

[Basili, Doerflinger]

- Goals/Questions/Metrics paradigm for measurement

and evaluation [Basili, Weiss]

- Measurement and evaluation is judged based upon

"cost/payofi" and "confidence in results" issues

(CLASSIFICATION SCHEME FOR EXPERIMENTS)

[Basili, Selby]

- Formalize expert knowledge (EXPERT SYSTEM)

[Basili, Loggia-Ramsey]

- Formalize evaluation & improvement paradigm [Basili]

- Formalize the tailoring of processes towards project

quality goals and environments [Basili, Rombach]

TAlk,fiE (TAILORING A MEASbTtEh,ENT ENVIRONMENT)
V. Basili

Univ. of Maryland
8 of 24

LESSONS LEARNED

• DEVELOP QUALITY A PRIORI

• PROVIDE 3z SUPPORT FEEDBACK

! • DEVELOPMENT METHODS ARE
I HEURISTIC AND NOT FORMAL

.. PREPARE DEVELOPMENT PROCESS FOR
MEASUREMENT _ EVALUATION

• ALL PROJECT ENVIRONMENTS ARE

DIFFERENT
|
| • REUSE EXPERIENCE ONLY AFTER

i TAILORING IT

• THERE ARE MANY PROCESS MODELS

i (NEED TO BE TAILORED)

m •

!

!

!

MANAGEMENT CONTROL IS CRUCIAL

AND MUST BE FLEXIBLE

MEASURES IN ISOLATION ARE USELESS

(METRIC VECTOR)

EXPLORATION MUST BE TOP-DOWN (TO

GET THE WHOLE PICTURE)

i • DEFINE TERMS (COMPLEXITY, METHODS,
oooe)

i

i
TAME (TAILORING A MEASUREMENT ENVIRON:V[ENT)

V. Basili

Univ. of M_try]and
9 of 24

FUTURE SDEs

SDE MODEL (Environments Workshop, UMD,

May 1986):

(de . I*ROCES.f e't. J

CONSTRUCTIVE SDEs 1

o n____eme___ttho___ddor t o o___11 ,__.

a set of methods and tools
a set of methods and tools d I I I s

supporting ONE particular V'r_ _ /

process model !_"///_//"

a set of methods and tools If -- S_ov_"_
supporting a VARIETY of _ -v,,,d-_*-_
process models _ / f _ f/

a set of methods and tools

supporting a VARIETY of "_ > T _ _

META PROCESS MODELS, which _ (10_$'_ev_can be TAILORED to _ __
specific project needs. - .

TAME (TAILORING A I_IEASUREMENT ENVIRONMENT)
V. Basili

Univ. of Maryland
10 of 24

TAME REQUIREMENTS

PURPOSE: DEVELOP PROTOTYPE FOR

- Establishing evaluation goals

- Deriving questions / metrics

- Collecting / validating data

- Storing / retrieving data

- Interpreting data wrt. evaluation goals

POTENTIAL USERS:

- Managers

- Developers

- QA personnel
- Researchers

|

USER VIEW OF THE SYSTEM:

- A system which is driven by a quantitative / traceable

SW quality model (goals/questions/metrics)

- NOT just a regular SDE augmented with measurement
tools

- Open-ended wrt. metrics 3_ evaluation goals

TAME (TAILORING A MEASUREMENT ENVIRONMENT)
V. Basili

Univ. of Maryland
11 of 24

TAME ARCHITECTURE

PC User Interface Level

Main Ada

frame dependent

|

TAME (TAILORING A MEASURE.MENT ENVIRONMENT)

V. Basiii

Univ. of Maryland
12 of 24

FIRST PROTOTYPE

• IMPLEMENT RESTRICTED SUBSET OF

THE TAME REQUIREMENTS:

- no support of interpretation
- small subset of measurement tools

- only minimal SDE interface (access to development

documents)

- restricted data repository

- Limited emphasis on security / configuration

mangement control strategies

TARGET SYSTEM(S):

MicroVAX (VMS) & SUN-3 (UNIX)

Implementation should allow for distribution (data
repository, measurement tools & evaluation on a

main-frame, user-interface level on PC's)

IMPLEMENTATION LANGUAGE(S):

- iDA (MicroVhX) for Ada-dependent levels

(measurement & data repository level)

- Pascal or C (SUN-3) for the Ada-independent levels

(user interface & evaluation level)

• SCHEDULE:

- Complete this prototype by Fall 1987

-Work on related research issues in parallel

T_-_vIE (TAILORING A MEASUREMENT ENVIRONMENT)
V. Basili

Univ. of Maryland
13 of 24

CONCLUSIONS

• TAME IS A VERY AMBITIOUS PROJECT

TIME'S OBJECTIVES GO BEYOND

AUTOMATING MEASUREMENT 3_

EVALUATION ACTMTIES

TAME WILL HELP DEVELOPING

GUIDELINES FOR FUTURE SDEs

TAME ALLOWS / REQUIRES SOFTWARE
ENGINEERING TO INTERFACE WITH

OTHER COMPUTER SCIENCE DISCIPLINES

-- data bases

- artificial intelligence

TAME (TAILORING A MEASUREMENT ENVIRONMENT)
V. Basili

Univ. of Maryland
14 of 24

EXPERIMENTING WITH

EXPERT SYSTEMS

FOR

SOFTWARE MANAGEMENT

VICTOR R. BASILI

CONNIE LOGGIA RAMSEY

V. Basili

Univ. of Maryland
15 of 24

M O TI VA TION

Why develop expert systems for

Software engineering ?

To capture rules of the SE process and

use them to guide S/W management

It allows us to:

handle more information

capture corporate knowledge

train new personnel

V. Basili

Univ. of Maryland
16 of 24

Methodology

Given a homogeneous environment and data

from past software projects,

1. determine useful variables

- easy to collect

- meaningful

- examples

programmer hours

lines of code

V. Basili

Univ. of Maryland
17 of 24

Methodology

2. Develop baselines of normalized metrics

- example - average programmer hours per

line of code for past projects at specific

time intervals

- historical

- environment-specific

- normalize by comparing variables against

each other

- average value of baseline is "normal" for

past projects

- deviant metric values (more than one
standard deviation above or below the

average baseline) suggest abnormal project

development

V. Basili

Univ. of Maryland
18 of 24

Methodology

3. Determine interpretations for metric values

which deviate from baseline.

- examples

unstable specifications

good testing

V. Basili

Univ. of Maryland
19 of 24

RESEARCH ISSUES

FEASIBILITY OF EXPERT SYSTEMS

- SCIENCE OF SOFTWARE ENGINEERING NOT

WELL DEFINED

- KNOWLEDGE BASE EXPLORATORY

METHODS FOR CONSTRUCTION

- TYPE OF INFERENCE MECHANISM

RULE-BASED DEDUCTION VS, FRAME-BASED ABDUCTION

- METHOD OF KNOWLEDGE ACQUISITION

TOP-DOWN VS° BOTTOM-UP

TRANSPORTABILITY

- ARE THE RESULTS GENERALIZABLE

- CAN SYSTEMS BE MOVED TO OTHER ENVIRONMENTS

V. Basili

Univ. of Maryland
20 of 24

Methods for Building Expert Systems

- Determine which is best suited for software

engineering

- KMS

- Rule-Based Deduction

I

I

i

I

I

I

I

I

I

- IF _antecedents_

THEN < consequents

- used simple rules (one metric clause in

antecedent)

- used certainty factors (indicate certainty

of conclusion given the antecedent)

- Frame-Based Abduction

- one frame for each interpretation

- hypothesize-and-test cycles

- generalized set covering model
V. Basili

Univ. of Maryland
21 of 24

Example Operation

Given a new project,

- determine values of metrics at

phase

particular time

- determine whether these values

(using standard deviation test)

are deviant

- indicate findings to expert system

V. Basili

Univ. of Maryland
22 of 24

I

I

i

I

I

I

i

I

I

I

I

i

I

I

I

r

I

I

I

0
0

i

'f"-

"° ::i "" J
Ill "" "° ee --'" ""

"-.:." . ..-: .-"

. .J o,,"

,,'.: .- f .,
E ..>.- ..-" ..

'-
0

m" mm

m m_ m

m _ i_

. m

EC HC L,._-: ST AT
T i _'..'Je

,:.v ,::T

V. Basili

Univ. of Maryland
23 of 24

POSSIBLE INTERPRETATIONS

ERROR PRONE CODE <0,94>

EASY ERRORS OR CHANGES BEING FOUND OR FIXED

LOTS OF TESTING <0.75>

LOTS OF TERMINAL JOCKEYS <0,75>

UNSTABLE SPECIFICATIONS <0.50>

<0,81>

NEAR BUILD OR MILESTONE DATE <0.50>

GOOD TESTING OR GOOD TEST PLAN <0.25>

MODIFICATIONs BEING MADE TO RECENTLY TRANSPORTED

CODE <0,25>

V. Basili

Univ. of Maryland
24 of 24

AUTOMATING THE DESIGN PROCESS

WITH SYNTACTIC-BASED TOOLS

Marvin V. Zelkowitz

Department of Computer Science

University of Maryland
College Park, Maryland 20742

Abstract

This report describes a tool that is being developed to aid in the design process of

software production. It is an extension to the SUPPORT syntax directed editor. The

idea is to create grammatical descriptions of the design process and embed them into

the syntactic structure of code production. The extension of a monolithic environment

like SUPPORT which can handle programs of about 5,000 source lines into a distri-

buted environment handling systems of up to 1,000 modules of 100,000 source lines of

code is also under study. This report describes some of the experiences to date and

gives early indications of how this development will proceed.

1. Introduction

For the past several years, the SUPPORT environment has been under develop-

ment as a mechanism to aid programmers to build and test reliable Pascal programs

[Zelk 84]. From one perspective (e.g., the user community of Freshmen computer sci-

ence majors at the University of Maryland), SUPPORT can be view as an intergrated

environment for the development of Pascal programs that runs on an IBM PC com-

puter. It is based upon a syntax-directed editing paradigm for entry of source text,

and it contains an interpreter and debugging tools all managed in a multi-window

environment (Figure 1).

Syntax editing differs from the usual character oriented editor in an important

way. Instead of the cursor on the screen indicating a position in a program file where

text can be entered, in a syntax directed editor the cursor wraps a segment of the pro-

gram and the user can either type in the appropriate text or can choose an appropri-

ate response from a menu of choices on the screen (Figure 2). In this example, the

cursor wraps the statement placeholder, and any text that is a syntactically correct

statement may be entered.

The use of windows allows for a programmer to monitor several activltes at one

time. For example, Figure 3 displays four windows on the screen. The top window is
the command window where commands to SUPPORT are echoed. Window 2 is the

Variable Trace window where individual variables can be displayed and are automati-

cally undated on the screen when their values change. Window 3 is the Statement

Trace window where the programmer can watch the program dynamically execute,

M. Zelkowitz

Univ. of Maryland
I of 15

and window 4 is the Execution output window where output from the program

appears. The system contains several additional ways to aid the programmer in

developing a program including the ability to interrupt and restart execution, to set

breakpoints and to display data from the program's run time data display stack.

SUPPORT has been in use at the University of Maryland, and based upon this

past year's experience, as well as experience from others [SIGS 84] who have built syn-

tax directed editors, several conclusions can be stated (Figure 4):

(1) The acceptance of syntax directed editing seems inversely correlated with previ-

ous programming experience. That is, more experienced users find the constraints

of syntax editing very limiting. Although the syntax editing paradigm has been

available for about 8 years, it has not generally caught on. More about this

later.

(2) Syntax editing is a powerful program building technique, but is it perhaps more

of a solution looking for a problem to solve. The concept is very simple - pro-

grams are stored as parse trees, and commands to manipulate these trees are

easy to build. Unfortunately, little work has gone into how to use these com-

mands effectively and how to integrate these commands with the needs of pro-

grammers.

(3) An important issue in all this is the user interface. The syntax editor has to help

the user build better programs and not perceived as a roadblock to its accep-

tance. This user interface has been generally ignored by others.

(4) One way to aid the user is the concept of an editing hierarchy with syntax edit-

ing as only one aspect of this structure.

2. Editing Hierarchy

Syntax editing has generally not be viewed as a powerful editing technique since

it is viewed as too constraining to the program. The problem is that the technique is

useful in limited situations so an editor that depends upon the technique for total pro-

gram generation is hard to manage.

For example, program modification is extremely difficult with this paradigm.

Usually the entire segment of the program must be deleted and rebuilt since the

underlying tree reproesentation must be maintained. In order to avoid such problems,

the following classification scheme for editors is being developed (Figure 5) [Zelk 87].

It is assumed that an effective editor contains more than one level of editing feature.

(1) At the base level is the character oriented editor, much like existing full screen
editors. In the SUPPORT case, the user can wrap a segment of source program,

pull the text into a separate editing window, modify this text arbitrarily, and

have the text reparsed into the program tree on exit from this internal editor.

(2) A second feature is the file inclusion feature. This works best for passing data

declarations like COMMON blocks in FORTRAN among modules.

(3) A third level is the syntax editing mentioned earlier. Most editors have the first

two of these and syntax editing has only this third level. SUPPORT contains all

three levels. The include feature reads in full syntax which means that programs

M. Zelkowitz

Univ. of Maryland
2 of 15

written using other editors or systems can be pulled into the environment.

Although SUPPORT is designed as a closed system with its own file system for-

mat, it does have commands for importing and exporting source programs so

that SUPPORT can be used to interface with other systems.

(4) The abililty to add macros adds to the power and extensibility of the underlying

programming language. An experimental version of SUPPORT is looking at

macro additions. The inclusion of large macros gives the system a fourth genera-

tion language flavor with a fill-in-the-blanks approach to programming while a

large number of small macros gives the system the appearance of a language

extension and a design language flavor.

(5) Knowledge representation allows for the ability to use artificial intelligence and

expert system technology to aid in the design process. This is currently under

study in SUPPORT.

(6) A complete data flow model allows for compiler optimization technology to build

better source programs.

The SUPPORT project is evaluating these alternatives. It is our belief that a system

that implements them all will develop as a powerful design language processor and

not simply a source code generator.

3. Application to NASA

An important issue to discuss here is what is the relationship of a system like

SUPPORT to the programming environment at NASA. Source code entry is not a

major problem there, so a syntax directed editor would be of marginal benefit. How-

ever, instead of the view of SUPPORT given above, consider the following description

(Figure 6):

(1) The language handled by SUPPORT is defined by a grammar that initializes

SUPPORT's internal tables when execution begins. Grammars for subsets of Pas-

cal are currrently used by students; however, we have built grammars for C and

for Ada, and are experimenting with design grammars useful to NASA.

(2) SUPPORT contains a window manager for developing any structured text.

There is some semantic checking of this text to aid in text generation.

(3) Much of software production is document preparation: requirements, specification

and design documents, source code, test plans, etc. NASA estimates that up to

50% of the cost of a project falls into this area. Thus an effective document

preparation system would have a large potential payoff.

An early prototype of SUPPORT for the NASA environment is described by Fig-

ure 7. Each NASA FORTRAN module is described by a design prologue and the gen-

eration of structure charts is an early indication of overall program structure (Figure

S).

In Figure 9, the grammar read into SUPPORT was designed to look like these

design prologues, and in this picture module ProcC is called from both ProcA and

ProcB and calls ProcD and ProcE. This can be easily seen by the new window which

displays this information automatically (Figure 10). The user can nagivate through

M. Zelkowitz

Univ. of Maryland
3 of 15

the structure chart with the current module always being in the center (ProcC in Fig-
ure 10) and the calling moduleson line 1 and the called moduleson line 3.

The initial prototype seemsquite feasible, so the problems that remain are how
to integrate the basic window structure of SUPPORT into the operational NASA
environment. (This is not as easy as it sounds.) Thus the goals for the current
researchare summarized by Figure 11:

(1) SUPPORT is limited to single user systems of up to 5,000 lines of source pro-
gram. This needs to be extended to systems of several hundred modules and
perhaps up to 100,000lines of code. Internal data structures need to be greatly
altered to handlesuch complexity.

(2) The design language grammar needs to be studied for effectiveness in this
environment.

(3) NASA needsto be able to test programs on the target computer system which is
a large mainframe while SUPPORT was designedto run on DEC VAX and IBM
PC computers. Instead of an internal interpreter, the system needs to interact
with the running program on another machine in a distributed manner. The
major researchproblem is to develop a protocol for this interaction.

This project hasshown the feasibility of using intergrated environments within indus-
trial settings. However, in order to make such systems practical, there needs to be
further work on both the design language needed by a professional programming
group like at NASA and with building distributed integrated environments across
diverse hardware.

4. Acknowledgement

This work wassupported in part by NASA grant NAG5-368 to the University of
Maryland.

5. References

[SIGS 84] Proceedings of the ACM SIGSOFT Symposium on Practical Software

Development Environments, Pittsburgh PA, April, 1984.

[Zelk 84] Zelkowitz M. V., A small contribution to editing with a syntax directed edi-

tor, ACM SIGSOFT Symposium on Practical Software Development Environments,

Pittsburgh PA, April, 1984, 1-6.

[Zelk 87] Zelkowitz M. V., An editor for program designs, IEEE Computer Society

Compcon, San Francisco, CA, February, 1987.

M. Zelkowitz

Univ. of Maryland
4 of 15

THE VIEWGRAPHMATERIALS

FOR THE

M. ZELKOWITZPRESENTATIONFOLLOW

SUPPORT

One View

• Integrated environment for Pascal development

• Based upon syntax directed editor

• Pascal editor, interpreter, debugger, window

manager

• Runs on PC-DOS and UNIX systems

• Used at University of Maryland in introductory

computer science course for majors

Figure i.

M. Zelkowitz

Univ. of Maryland
5 of 15

Ii

0

!

7"
t

c--

O_

@

M. Zelkowitz

Univ. of Maryland

6 of 15

!1

.,,._.

i

E
kl_l

%.

C"J
°.

-t-_'
iw

i-I II

E: i
.1_, FII

r..,.._P- II
0 _'

- - LLI r--
,-i ILl

,--,II i
ILl .--_.J-'_
r'[,.-',72_,I I I

Q_ 0 ,-_

i---, IL._J
r.,o

.,.,'..,.

SUPPORT

Initial results

• Preference for standard editing seems correlated

with previous experience

• Other syntax editors generally not used

extensively

• Syntax editing is a powerful program building

technique, but is it more a solution looking for a

problem to solve?

• The user interface has generally been ignored by

others

• Development of editing hierarchy

|

Figure 4.

M. Zelkowitz

Univ. of Maryland
8 of 15

SUPPORT

Editing hierarchy

Q Full screen character editor

Hierarchical file inclusion

Syntax editing

Macro processing

• Knowledge representation

• Data flow model

Figure 5.

M. Zelkowitz

Univ. of Maryland
9 of 15

SUPPORT
• ?How applied to NASA environment.

• Driven by externally defined grammar

• Intelligent window manager for developing

structured text

Some semantic checking of attributes

Much of software development is document

preparation

Figure 6.

M. Zelkowitz

Univ. of Maryland
10 of 15

SUPPORT

Design Prototype

• Look at design prologues

• Build structure charts

L
C

A

B

[
I

D

1

Figure 7.

M. Zelkowitz

Univ. of Maryland
11 of 15

."x

-:<

/'-,..

X

x j

(3O

-,-I

° "1

cj
0
0
L
13-

LU
Z
I--4
b-

6d
133
._J
(,'3

...._...

0
0

£_

I

I

I

,.'.D q_._,.'__ ,.'_'.,,.'_:, c_._,.- ".,c._'_,:_'_ ,.'_'.,,_) ,.'.__,.'_3,.'._'_.C__.r_-_,.-_-,,7--.,,-'_ ,:_'., ,.-:, ,_._ ,:_3 ,.'._ ,.'_', ,.'_:, ,."".,

M. Zelkowitz

Univ. of Maryland

13 of 15

i-I-i
0
0
L

I
!
I
I
I IA_I
i 0
I 0
I _-

i i 0

i ll ii i

r._
0
0

O_

W
Z
H

--n
0

im.

,:0

/'%.

E
0
_j
_20

Z 03
,.__ Z

I--- H
.A. l--

ILl <[

'L." ,-i 03 LI_I
CO ': ",- EL
LLI 13- ,--- -" "--J

-- b--7 LLI LI_I
r--, ('l • _

,-," ILl ----'-

/'.. EL I_LILLI"..

-I-;' I--I _ "" '_.D L-r_.:LL 03

(_I _ lIJ CO ,.'0
-_ H-UJ 0 bJ _i_ OJ_ C

(/_ 0.. ,i_ ._J UJ ..J H--
"../ _ .?--"- EL _ i__ _---__--I "-v

..J I-- -_ OJ b_----'-./.....
.... (._) _ ---i --

H-H- _J ,-_ Od
W "-______'-_ _- LIJ r,m.. <[.7_ -_- ILl
0'3 m LLI mm --_" __ ___ -:_ -_'
C, -_" _ _--t _ ,'Y n.-"-_-- ,-___,
r, _ _I H- .__ W_- _
rr" r _. r m. -_1 --_ _ i'-- 1._ -_ ,',';,

Q_ _..-[-::_ c__ _ c.D W LLr-,

,:_c.__.c__.c__.c.__.c__.c_)r.__ c__.c__.c__.c.__.c__c__.c.__.c.Dc.__.c__.

M. Zelkowitz

Univ. of Maryland

14 of 15

o
r.-.i

@
N

ba
-H

I
i

i
SUPPORT

Goals of current project

SUPPORT currently limited to single user 5,000

line software

Extend concept to 100,000 lines multi-user

developments

Extend system to create a design processor

Distributed design- interact with a running

program

Need to consider multi-machine interface

Figure Ii.

M. Zelkowitz

Univ. of Maryland
15 of 15

SEL ADA* EXPERIMENT:

STATUS AND DESIGN EXPERIENCES**

William W. Agresti***

Computer Sciences Corporation

ABSTRACT

The status of the Software Engineering Laboratory (SEL) Ada

experiment is reviewed, and the designs produced by the par-

allel FORTRAN and Ada development teams are compared. The

Ada team produced a significantly different design for the

spacecraft dynamics simulator. Several lessons learned from

the Ada design experience are discussed, including the con-

ditions favoring an Ada-oriented design and the importance

of understanding management expectations.

INTRODUCTION

Ada shows promise as a significant contributor to the devel-

opment of more reliable software. An experiment is in prog-

ress at the National Aeronautics and Space Administration's

Goddard Space Flight Center (NASA/GSFC) to learn whether Ada

will deliver on its promise. The experiment is planned and

administered by the Software _ngineering Laboratory (SEL) in

*Aaa is a registered trademark of the U.S. Government (Ada

Joint Program Office).

**Proceedings, Eleventh Annual Software Engineering Work-

shop, National Aeronautics and Space Administration,

Goddard Space Flight Center, December 1986.

***Author's Address: Computer Sciences Corporation, System

Sciences Division, 8728 Colesville Road, Silver Spring,

Maryland 20910.

W. Agresti
CSC

1 of 25

the Flight Dynamics Division at NASA/GSFC. Personnel from

all three SEL participating organizations--NASA/GSFC, Com-

puter Sciences Corporation (CSC), and the University of

Maryland--support the Ada experiment.

The objective of the experiment is to assess the effective-

ness of Ada in the flight dynamics software development en-

vironment at NASA/GSFC. The experimenters intend to gain an

initial understanding of Ada's effect on productivity, re-

liability, maintainability, reusability, and manageability.

This Aaa experience is expected to assist in planning the

development of software for the NASA Space Station.

The Ada experiment began in January 1985. It involves the

parallel development in FORTRAN and Ada of the attitude dy-

namics simulator for the Gamma Ray Observatory (GRO) space-

craft. Experiment organization and Ada training experiences

are discussed in [Agresti 85] and [Murphy, Stark 85]. This

paper provides an update on the experiment status, a summary

of the FORTRAN and Ada design comparison, and a collection

of lessons learnea about Ada-oriented design.

EXPERIMENT STATUS

The GRO dynamics simulator is being developed by two teams,

one using Ada and the other using FORTRAN, the language typ-

ically employed in this environment (Figure 3). Each team

was initially staffed at seven programmer/analysts. The

development environment is the DEC VAX-II/780 and -8600 com-

puters under VMS, with the Ada team using the DEC Ada Com-

pilation System (ACS).

W. Agresti
CSC

2 of 25

The simulator is part of the ground support software needed

for the GRO mission. Both development teams are building

real, operational software, not a "toy" system devised spe-

cifically for the experiment. The software will allow ana-

lysts to test onboard flight software under conditions that

simulate the expected in-flight environment as closely as

possible. The FORTRAN simulator consists of 51,000 source

lines of code. The Ada simulator, though not finished, will

be much larger as measured by source lines.

Figure 4 shows the schedule followed by both teams since the

January 1985 start. The FORTRAN team's schedule is typical

for this environment, with the exception being the extended

acceptance testing period due to lessened schedule pressure

after 1985. The Ada team faced the task of first learning

Ada. The first 5 months were spent chiefly in Ada training,

including the development of a 6000-1ine Ada pilot project

[Agresti 85]. This training period caused the Ada team to

lag the FORTRAN team in progressing through the development

phases. Another cause of the schedule differences in Fig-

ure 4 is the unequal staff effort levels of each team. Fig-

ure 5 accounts for this level-of-effort disparity, showing

the staff-months of effort attributed to each activity by

each development team. For requirements analysis and design,

the Ada team expended more effort; for Ada system testing,

however, less effort is being estimated. The rationale for

this lower estimate is that Ada modules are continually in-

tegrated during implementation. The effort typically re-

quired in a FORTRAN development for integration during the

system testing phase is not expected to be needed Dy the Ada

team.

W. Agresti
CSC

3 of 25

COMPARING FORTRAN AND ADA DESIGNS

As Figures 4 and 5 indicate, the Ada team is currently in

the implementation phase. When the Ada system is finished,

the long-awaited comparison to the FORTRAN simulator will be

possiDle. Available now, however, are both designs, so a

design comparison was conducted [Agresti et al. 86].

A preliminary comparison of the designs produced by the

FORTRAN and Ada teams revealed clear differences in design

drivers and design abstractions (Figure 6). The FORTRAN

team had more schedule pressure than the Ada team. This

condition, when coupled with the presence of FORTRAN-oriented

designs for past simulators, led to the adaptation of past

designs to serve the new mission's requirements. The Ada

team was encouraged to investigate so-called Ada-oriented

design approaches, that is, those that exploit Ada's features

and capabilities. The team was exposed to both PAMELA

[Cherry 85] and Booch's object-oriented approach [Booch 83]

during its training. Ultimately, the team developed and

applied its own ob3ect-oriented methodology [Seidewitz,

Stark 86j. The principal design drivers for the Ada team

were the encouragement to pursue new design methods and the

freeaom not to reuse past FORTRAN-oriented designs.

The aesign abstractions detected in the two designs reflect

the differences in design drivers. The FORTRAN design pri-

marily uses procedural abstractions, whereas the Ada design

is structured around objects and state machine abstractions.

The designs were nearly identical as measured by the number

of procedural units defined at the critical design review

(CDR) : 262 FORTRAN subroutines versus 252 Ada subprograms.

W. Agresti
CSC

4 of 25

Another focus of the design comparison was the operation of

each simulator as prescribed in each design. Figure 7 shows

the high-level structure of each design. Worth noting first

is the difference in design graphical notation. The FORTRAN

design is represented by structure charts showing invocation.

The Ada design uses object diagrams, with an arrow from ob-

ject A to object B showing that object A uses services pro-

vided by object B [Seidewitz, Stark 86]. The names used in

each design structure of Figure 7 are identical in three of

four cases: simulation control, onboard computer (OBC)

model, and truth model. The presence of a simulation con-

trol structural element in each design is understandable.

Because the interaction between the OBC and the rest of the

spacecraft and its environment (truth model) is the central

element of the attitude dynamics simulation, it is again

understandable that each design have such major units.

Although the names of the major units are identical, the

operation of the simulators is not. The FORTRAN simulator

increments its simulation clock and sequences through the

three major units in Figure 7: truth model, OBC model, and

simulation output. The Ada design in Figure 7 shows the OBC

model oDject above the truth model object in the diagram.

In the Ada team's object-oriented methodology, this arrange-

ment of objects in diagrams means that the OBC model object

is "senior" to the truth model object. The timing of the

ada simulator is controlled by the OBC model object, which

issues requests to the truth model for needed sensor data.

The timing of the OBC model is not under user control as it

is in the FORTRAN design.

The differences in design abstractions and simulator opera-

tions led to the aetermination that the Ada design was dif-

ferent in essential ways from the FORTRAN design (Figure 8).

W. Agresti
CSC

5 of 25

A more detailed comparison of the designs is provided in

[Agresti et al. 86].

LESSONS LEARNED ABOUT ADA DESIGN

The Ada team, through its experiences during the design

phase, learned a number of lessons about the relationship of

Ada and design. The first lesson follows directly from the

observation that a different design was produced by the Ada

team. Using Ada as the implementation language does not

ensure that an Ada-oriented design (i.e., one that exploits

Ada's abstractions and features) is produced. For example,

in one early Ada development project, the design of the Ada

system "looked like a FORTRAN design" [Basili et al. 85].

That an Ada-oriented design was produced in the current ex-

periment was attributed to the following conditions

[Agresti et al. 86]:

• The Ada team had the necessary resources to afford

not to reuse past designs.

• The Ada team worked directly from system require-

ments by removing the FORTRAN legacy in requirements docu-

ments ana recasting system requirements in the multiple views

of the Composite Specification Model (CSM) [Agresti 84].

• The Ada team understood alternative design abstrac-

tions and was encouraged to explore Ada-oriented design

methods (Figure 9).

T_le first condition--the flexibility not to reuse past de-

signs--is especially important. Reuse is a cost-effective

approach in the flight dynamics environment [Card et al. 86].

Not taking advantage of the legacy of past designs is costly

Dut, in this experiment, a key reason why an Ada-oriented

design resulted.

W. Agresti
CSC

6 of 25

i

|

|

|

|

I

I

|

l

|

i

I
I
I
I
|

i
i

I
r

The more general issue of legacy must be addressed by soft-

ware development organizations that have well-established

procedures and standards oriented to other languages. Fig-

ure i0 shows a range of alternatives for the introduction of

Ada, along with some possible consequences. If an organiza-

tion seeks to exploit Ada's features, the best opportunity

exists when Ada is designated at the start of a project. In

SUCh a case, the requirements can be specified in a more

language-neutral form, and the designers can be free to in-

troduce design abstractions that reflect problem-domain en-

tities and map conveniently to Ada language features.

Several lessons learned during the design phase related to

the management of an Ada-oriented design activity (Fig-

ure ii). At the CDR of a FORTRAN project, the number of

modules is known and used in estimating remaining cost.

What, however, should the cost-estimating unit be for an Ada

development? At the CDR, the Ada design had 252 subprograms

organized into 104 packages; the Ada team used 252 as the

size measure for estimating future costs. At project com-

pletion, it will be clear whether 356 (252 + 104) would have

been a better basis for the cost estimate.

The Ada design products were unfamiliar to higher level man-

agers. The design documents and CDR materials featured ob-

ject diagrams like the one in Figure 12; managers, however,

were accustomed to seeing the structure charts used in

FORTRAN designs. The Ada team learned the importance of

educating management and review personnel before the CDR so

that the design notation would be understood.

The use of Ada-oriented design methods forced a reevaluation

of the milestone marking the end of the design phase. In

the flight dynamics environment, the criteria for design

phase completion are currently FORTRAN oriented. Ada offers

W. Agresti
CSC

7 of 25

greater opportunity for checking design consistency with the

compiler. Compilable package specifications and type defi-

nitions seem to be especially important elements to have com-

pleted by the CDR.

Project managers monitored the level of effort expended by

the Ada team during the design phase (Figure 13). Because

all members of the Ada team divide their time between the

Ada project and other work, effort levels fluctuated consid-

erably. Figure 13 shows that the seven team members con-

tributed hours to the Ada project at a level lower than two

full-time equivalent staff during some months of the design

phase. This varying, and generally low, level of effort

contributed to the extended schedule shown in Figure 4. The

peak effort in Figure 13 coincided with management reviews,

demonstrating that the deadline effect is language independ-

ent.

Some preliminary lessons learned about staffing were the

positive experiences using recent computer science graduates

and phasing in new Ada team members (Figure 14). The Ada

package specification-body dichotomy facilitates the defini-

tion of a "design envelope" to restrict the working span of

new staff members.

SUMMARY OBSERVATIONS

The principal observations on the Ada team's design experi-

ences can be summarized as follows (Figure 15):

• The Ada team did produce a different design for the

simulator.

• Specific conditions encourage the production of

Ada-or iented designs.

• _aa can influence every aspect of design, especially

management expectations.

W. Agresti
CSC

8 of 25

Monitoring of the Ada experiment will continue. The col-

lected experiences in coding and testing--along with the

FORTRAN and Ada product comparisons--will certainly provide

useful information on the effect and effectiveness of Ada.

ACKNOWLEDGMENTS

The support of the Ada team and the contributions of the Ada

experiment managers, F. McGarry and R. Nelson of NASA/GSFC,

are appreciated.

REFERENCES

[Agresti 84]

Agresti, W. W., "An Approach for Developing Specification

Measures," Proceedings, Ninth Annual Software Engineering

Workshop, NASA/GSFC, November 1984

[Agresti 85]

Agresti, W. W., "Measuring Ada as a Software Development

Technology in the Software Engineering Laboratory (SEL) ,"

Proceedings, Tenth Annual Software Engineering Workshop,
NAS_/GSFC, December 1985

[Agresti et al. 86]

Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,

"Designing With Ada for Satellite Simulation: A Case

Study," Proceedings of the First Annual Symposium on Ada

Applications for the NASA Space Station, Houston, Texas,
June 1986

[Basili et al. 85]

Basili, V. R., E. E. Katz, N. M. Panlilio-Yap,

C. L. Ramsey, and S. Chang, "Characterization of a Soft-

ware Development in Ada," IEEE Computer, September 1985

[Booch 83]

Boocn, G., Software Engineering With Ada. Menlo Park,

California: Benjamin/Cummings Publishing Co., Inc., 1983

[Card et al. 86]

Card, D. N., V. E. Church, and W. W. Agresti, "An Empir-

ical Study of Software Design Practices," IEEE Transac-

tions on Software Engineering, February 1986

W. Agresti
CSC

9 of 25

[Cherry 85]

Cherry, G. W., "Advanced Software Engineering With Ada--

Process Abstraction Method for Embedded Large Applica-

tions," Language Automation Associates, Reston,

Virginia, 1985

[Murphy, Stark 85]

Murphy, R., and M. Stark, Ada Training Evaluation and

Recommendation, SEL-85-002, NASA/GSFC, October 1985

[Seidewitz, Stark 86]

Seidewitz, E., and M. Stark, General Object-Oriented

Software Deve±opment, SEL-86-002, NASA/GSFC, August 1986

W. Agresti
CSC

10 of 25

THE VIEWGRAPH MATERIALS

FOR THE

W. AGRESTI PRESENTATION FOLLOW

tu

tu
Z
O
I

O
n_

ttl

gC
ttl

n_

O

A
i

"T
gg

t_

Z z
0 __.

03

0

Z
0 w

G

Lu
Z _

0

©

©
W. Agresti
CSC

1 1 of 25

<

m

ee
ul
n_
X
uJ

<

<

Z
<

ee
O
LL

m

<Z

<

<

I,IJ
Z

<
U.i

<

©

©

H

W. Agresti
CSC

12 of 25

• •

i

e_

z
0
0 0

©

©

W. Agresti
CSC

13 of 25

U
Z

eLw

U

I,IJ _"
vJ

Z
@

k,,

Z

Z

e_

J

___= Z

tl_

\

O

lauv i

• mm_

N
O

J

i

Z

ILl

Pc

m
.m_ w

,_uJ
t,--

f,,,,,
co

co

¢0

Z g

o_

0 z

I.-

>.

[...,

O

©

©

H

W. Agresti
CSC
14 of 25

I

0

n-
O
I,
I,
I,I

U.

u. _ ,H

iii
o
z

u,I i.-

0

ffl
I.M

I--
ffl

W

0
0

1 ' I

0 0

I ' I

0 0

a

--I

z

z

z
I

I--

SHINOIN -!--1VIS

¢.o

,"n

>..
I-.-
1

m

I--
",.,)

Z Z

0 o

Z o

o
Z

0
0

X

z;
_ >-

m

¢

[..

0

Q)

r_

W. Agresti
CSC
15 of 25

r_

<
<
r_
<
r_
z
< z

mZ
UJ

z
<

0 _"r,-
LL 0

LL

I

<
a.

0

u)

u)
I.U
Z

Z _- <:

-- u.I.- _ 0

I-.. uJ_ 0 (/)
"rZ 0

< _0 cc

u)
Z
0 -_
aim

_.. <

_n _ z0
Z_. Z<: --

_>- _ z
uJ_ uJ_ :_

I.U
N
i

Z Z

0 o

< >

G

0 zL_

r_ ,,,
Z _

0

©

©

_,0

H

W. Agresti
CSC

16 of 25

0

.._J

m

Z

Z -

0 o
,,

z
O_

_o

z

O_

_n
.J I-

_uJ
ma
O0

-1- _.1
I--LIJ
_O
n'O

LLI
:E

I--

_n

Z Z
0 0

m _
0

iZ o
Z

0
O 0

(D
_,1 >.

m

0

©

0

W. Agresti
CSC
17 of 25

LL
IJ_

n i

• •

W. Agresti
CSC
18 of 25

0

0

Z z
o o

5

0

0 z

w

0

©
W. Agresti
CSC

19 of 25

135

Z
LU

0 u
•.-- Z

LU

8

<

Lu < 0--

0 < - >'Z,
_" = ->- --_ww

(.1 -J Z(.9 I-- _ _ _:

_ i_ _ _ _,_

M

w

<

o
e-

• • • • z
0

<

<

0
LL

W. Agresti
CSC

20 of 25

o
,--4

_3

tu

/

tu

I

I_u

t_

a-

_r: _ _ _ _

Z tu _,
__.1 __!

0 D _D n_ c_

Z 0 D 0 _-
uJ

w <: (n Z _

Z I-- I- m m

_J

o

Z
0

z
o

0 _

m o3

Z _"

_ >"

m

©

©
W. Agresti
CSC

21 of 25

m

W

r.D
cO

t'M

i :7

_o

>

u
0 zkid

al

o

©

©

H

W. Agresti
CSC

22 of 25

tr
O
!!
i!
Iii z
u.t_

..I

tU _

a

cr
o.

rr
<

cO

t_
W
kt.

z

tt_

y_

z_0
-

,_ >

I_ uJ
Z

r_ uJ
Z _

>,

I--t

W. Agresti
CSC
23 of 25

m

I.IJ
¢J
Z
I,U
I

¢J
u)

I.IJ

n_

0
¢J

Z
14.1
¢J
i.IJ

u) cn
IJ.I 1.1.1

I

I

Z ¢J
< <
..I I.IJ

Z 0 ua
ua 0 Z
L. _ u_
u_ Z UJ
u_ <m

C:

<
I--_ 0
_< I I I 0 1

a.(.0

i

v

,<

t','l

o

z_
Lr)

r,3
C) u')

0 ZuJ

u.J
Z _-

©

©
W. Agresti
CSC

24 of 25

Z Z <: "-
m o 0
m

• • •

t

m

<

Z z
o o_

5
0 m

z
0

Z _-
m>.

_j u)

F

_w

0

©
C_
C_

W. Agresti
CSC
25 of 25

ta'3
,--q

PANEL #2

EMPIRICAL STUDIES OF SOFTWARE TECHNOLOGY

E. Soloway, Yale University
V. Shen MCC

J. Gaffney, IBM

Studying Software Documentation From A Cognitive Perspective:

A Status Report

Elliot Soloway, Jeannine Pinto, Scott Fertig,

Stun Letovsky, Robin Lampert, David Littman, Ken Ewing

Yale University, Department of Computer Science

New Haven, Connecticut 06520

1. Introduction

Software documentation should be particularly invaluable for the maintenance programmer:

since the maintenance programmer is typically not the original programmer, the maintenance
programmer needs to go to some repository for key information --- the kind that that can't

really be gleaned from the code itself. In practice, however, software documentation ha_ a bad

--- and probably justified --- reputation: programmers don't like to write it (it takes too much

time, it isn't as much fun as designing/coding, and guidelines are often vague), or read it (it is

never up to date; the only truth is in the code), and managers don't like to pay for it

(documentation is the first thing to be cut when a project gets into trouble). Nonetheless, pages
of documentation, best measured by the standing foot or the micro-ton, continue to be churned

out. Why is there this disparity between intent and realization? What can be done about it?

Just perhaps, if we take what looks like an orthogonal perspective, we might be able to identify

a few gems. In fact, for 2 years now we have been studying the relationship between software

documentation and maintenance from a cognitive perspective; in this brief progress report we
attempt to describe the key insights we have had in this effort.

2. Basic Questions Concerning Documentation

There are three basic questions that need to be answered
documentation:

in developing effective

• WHAT" What should tile content of documentation be? Should each variable be

described? Should control/data flow be described?

• HOW." What should the format of documentation be? Should English be used? Should
flowcharts? Should PDL?

• WHEN: When should the programmer see a particular piece of documentation? By

and large, the answer to a programmer's question is probably "in there somewhere,"

but the cost of searching volumes and volumes and volumes is a demoralizing, time

consuming and often fruitless endeavor. The programmer needs to see a particular

piece of documentation when it is needed --- whatever that might mean.

Clearly, these three issues are intertwined; however, they can profitably be separated out, and

studied more or less independently. In particular, our first studies (Section 4) have focused on

the WHAT question. On the basis of a better understanding of the WHATof documentation, we

then initiated a study focusing on the WItEN question (Section 5).

The research reported in this paper was supported by the Jet Propulsion
Laboratory_ California Institute of Technoiogy under contract with the

National Aeronautics and Space Administration.

E. Soloway
Yale University
1 of 6

3. Methodology

As we have done with other aspects of the software process, we have taken a cognitive

perspective in this research: our approach is to try and unders1._d how programmers really use

documentation. There are two aphorisms that guide this work:

• "You can observe a lot by just watching." Yogi Berru. We need to see what

programmers really do in specific situations. Arm chair prognostication hasn't done

a lot for software documentation to date. Thus, we video-taped professional

programmers doing a maintenance tazk; we asked them to talk-aloud tell us what

you are thinking about --- as they went about the task. The talking-aloud

methodology is one that is being more widely used in naturalistic problem solving

situations. Such verbal protocol data provide a window into the cognitive processing

that is going on in the head of the programmer. Reaction time studies, the forte of

psychologists, are fine for the laboratory when the task being carried out is very

focused. However, what would it mean to wire a programmer up to a reaction time

meter? What would millisecond differences mean? Also, it is not clear that

statistically-oriented studies are useful at this stage of research. That is, there is a

standard distinction made in psychological research between:

o Theory-testing research: where one tests hypotheses using statistical methods,
and

o Theory-building research: where one tries to simply develop hyl)otheses.

It is clear to us that we are in the theory-building mode: studying complex problem

solving behavior is a recent development in cognitive psychology, and there is

precious little known. Thus, numbers are not really all that useful here: trends and

qualitative remarks are the measurement tools.

"Little by little grow the bananas." Judy Soloway. One typically doesn't learn to

ride a bicycle by jumping onto a 10-speed bike; rather, training wheels are a good

idea. Similarly, we haven't jumped into studying a 50,000 line program immediately;

we need to learn the business first in a somewhat more restricted setting. Once we

h_ve some confidence in our methods -- and in ourselves -- then we can jump in over

our heads.

In what follows, then, we will outline the two studies we have conducted at JPL, and some of

the key observations made in each.

4. Study Area 1: Examining The WHAT Question

There have been two phases in this study area: first, we attempted to understand the baseline

-- what do programmers do. Next, we carried out a "manipulation:" can we change the

documentation _nd affect performance; the data from this phase is still under analysis.

E. Soloway

Yale University
2of6

4.1. Phase I: What Do Programmers Do With Documentation?

Our initial study was to give professional programmers a program plus some documentation

that followed professional guidelines, and ask them to make all _..hancement. The program was

a 250-line, 14 subroutine, Fortran program that managed a sl_s:,Jl database of personnel records

(containing name, address, etc.), and allowed a user to CREATE, SHOW, UPDATE, DELETE a

record. The enhancement was to add a RESTORE co._ltland, that would undelete records

deleted during the current session with the program.

In studying the video-taped interviews with over 20 professional programmers, two major

observations can be made:

WHATprogrammers needed to know: The information that was key to making the

enhancement was information about the causal interaction of non-contigious, non-

local, pieces of code. For example, in order to make a correct patch, programmers

needed to realize how the database search routines interacted with tile delete/restore

commands: the search routines return ONLY active records, since all other previous

commands wanted only active records, whereas tile restore routine would want the
search routines to return a deleted record! This sort of causal information is

typically not identified in the code, and it is typically not identified in accompanying

paper documentation.

Strategies for comprehending the program: We can coarsely describe two different

strategies used by programmers as they went about understanding the program and
docu men ta.tion:

0 Systematic Strategy: When using this strategy, programmers started at the

beginning of the program and documentation and traced out the flow of the

entire program, using various forms of simulation (e.g, symbolic, actually

plugging in values). Once they understood the program to their own

satisfaction, they attempted the patch.

O As-needed Strategy: When using this strategy, l)rogrammers used their

anticipated patch to guide their study of the prograln; if additional information

appeared to be necessary, then they would attempt to backtrack and find the

relevant information.

Predictably, there was an interaction between the strategy employed by the subjects, their

acquisition of an understanding of the causal interactions in the program, and a correct

enhancement:

• Adopting a systematic strategy invariably led to a correct enhancement.

• Adopting an as-needed strategy lead to mixed results: about half the subjects who

adopted this strategy failed to come to understand the causal interactions and thus

didn't develop a correct patch.

In otherwords, by not getting a global, more or less complete sense of the program, one is not

likely to "back into" global information when one is by and large focused on u local portion of

code.

E. Soloway

Yale University
3of6

The above observations amount to this: the better one understands a program, the more likely

one will be able to change it correctly. Not too surprising, frankly. However, our work has

focused on what it means to understand a program: what are the key pieces of information that

will facilitate a correct view of a program, and in turn, facilitate a correct modification of the

program, e.g., an understanding of the causal interactions that obtain between non-local pieces
of code. While a systematic strategy provides an essentially fool proof scheme for uncovering

such key facts, this strategy becomes impractical on real programs: by and large, it just isn't

worth the effort to understand a 100,000 line program in order to create a 15 line patch. (It may

not even be possible to truly acquire a global understanding of a very large program!) Thus,

almost by definition, programmers will have to adopt an as-needed strategy when they approach

a real software maintenance task.

4.2. Phase II: Can We Help Programmers With Better Documentation?

What, then, are the implications for documentation if programmers will be adopting an as-

needed strategy? Based on the above research, we can make the following claim: we need to

explicitly provide programmers information about the non-local, causal interactions in the

program. That is, we need take information that is typically gained by simulating the program

and allow the programmer access to it, without the programmer actually needing to carry out

the simulation. Put still another way: progralns are static representations of dynamic entities; we

need to abstract out some of the dynamic properties and express them as static descriptions. No

mean feat, that.

We have recently carried out another video-taped study with programmers at JPL who were

asked to make the same enhancement to the same program described in Section 4.1. However,

this time the documentation did explicitly contain information about the non-local, causal

interactions. For example, in Figure 4-1 we illustrate how we documented this type of

information. Notice in particular, that the variable i ptr is key: it ties the search routines and

the delete routine together. We explicitly tell the programmer that there is an interaction taking

place. We felt that this explicitness would be a "sign" to the programmer adopting an as-needed

strategy: the programmer could use this information in backing into the information needed to

make the correct patch.

The results of our new documentation are mixed: in comparison to subjects using the initial

documentation, without the explicit information about the non-local, causal interactions, more

subjects who use our documentation and who elnploy an as-needed strategy do make a correct

patch; however, that difference is not statistically significant. However, what we are beginning

to see is an interaction between a programmer's background and his need/ability to use our new

documentation: apparently, subjects who know about database programs, and thus who have

some familiarity with the coding tricks used in creating such programs, don't seem to need the

"explicit documentation," while those with a less rich background in database programs do seem

to benefit most from our new documentation. In otherwords, individual differences are beginning

to become more and more apparent. Thus, while analysis of the data is still taking place, we

nonetheless feel that our documentation has tapped into something important; now, we are just

trying to tease out exactly when and why that documentation seems to be useful.

E. Soloway
Yale University
4of6

O0

Z
0

<

z

<

<
r_

<

©

©
Z
r_
Z
b_
Z

0

©

4
L.

I E. Soloway
Yale University
5 of 6

5. Study Area 2: Examining The WHEN Question

When a programmer is confronted by the need to make a patch to a real program, what

information does he need -- and when? To examine this question, we borrowed a real program

currently in use at JPL; to protect the names of the innocent, let us cull this program the X_rZ

program. X_YZ is approximately 50,000 lines of code and has documentation that stands about 2

feet high. We studied this program for days and developed what we thought was a simple

enhancement to the program. We then gave the stuck of documentation to two programmers

(working independently) at JPL, and asked them to find where in the program the enhancement
needed to be made. We video-taped the efforts of these programmers. (We need to point out

that X__rZ has been used at JPL for some time, and that there were guidelines for developing the

documentation. Moreover, the documentation was meant to be useful.)

What happened? Our two subjects each spent close to 2 hours each reading documentation,

trying to understand what the system did. That was the first basic question: what are the goals

of this program? What are the goals of the various modules in the program? They needed this

information first; they needed to get a coarse, global sense of what the program was intended to

do. The goal information was in the documentation; but, it was interwoven with many low-level

details that hid the main points and confused the programmer. \Vc repeat, the documentation we

used in this study was tlle real documentation for a real program.

We then rewrote the first manual in tile documentation set to reflect the prograininer's desire

for the overall goals of the programs and the goals of the various main modules. \Ve rewrote the

table of contents to this manual to reflect the new content. Our intention was to inake this first,

overview manual "predicatable." That is, our intention was to provide the key goal information

upfront, when the subjects apparently needed it. The result? We ran two subjects (again,

working independently) on our new documentation: it took each about 20 minutes to identify the

module where the patch needed to be made.

We are the first ones to say that this study has many problems with it! Is the documentation

for X%_rZ representative? or is it a worst-case? Were our subjects representative? or wcrc they,

too, worst-case? The fact still remains: we were able to reduce time on task from 2 hours to 20

minutes --- a big difference with a small number of subjects. Again, we seem to have tapped

into something important; now we need to carry out more crafted studies in order to tease out

exactly what is going on.

6. Concluding Remarks

We have been trying to breathe some life into program documentation: our intent is to develop

specific prescriptions for improving documentation so as to make it more useful. We have

approached the problem from a cognitive perspective: we need to understand how and why

documentation is used. From a practical viewpoint, we have identified what some key

information that should be included in documentation, and we have identified 'whc,_ some key

information should be made available. From a theoretical viewpoint, we have quite frankly

raised more questions than we have answered. But that's good, too. Documentation is like a

gold mine; the riches are there; but, not surprisingly, the difficulty of ferreting them out is

directly proportional to their value.

E. Soloway

Yale University
6 of 6

Empirical Research on the Design Process:

The Field Study

Vincent Shen, Herb Krasner, Neii Iscoe, & Bill Curtis

MCC Software Technology Program

Austin, Texas

Introduction

MCC's Software Technology Program is charged with providing its shareholders

with technology that radically improves the productivity and quality of developing large,

complex systems. The program has focused on developing technology for aiding the

requirements and design process (the "upstream"). As a part of this technology

development program, we have a team of 5 research scientists working full-time on

empirical studies of the design process. Our presentation will describe one of the studies

we have conducted, the initial observations drawn from it, and the implications of these

observations for modeling the software design process and guiding the development of

design technology.

We are conducting studies of the design process at each of three levels. At the

individual level, we are studying design as a cognitive problem-solving process. At the

team level, we are studying design as a social interaction process whose goal is to

communicate and negotiate mental representations of the behavior of the application

system and of the computational structure required to implement it. At the organizational

level, we are studying design as the integration of numerous processes (managerial,

technical, customer interaction, etc.) that emerge in large organizational endeavors. This

presentation will describe initial results from our studies at the organizational level.

Previous Studies of Large Systems Development

Since the mid-1970s, many corporations have been collecting data on the

productivity and quality of their large system development projects. These data are often

used to determine the major factors affecting productivity and quality in a particular

programming environment. These factors are frequently used in driving project cost

models. Four of the more important studies were:

° IBM Federal Systems Division [WALS77]. Walston and Felix of IBM

analyzed 60 reports from project managers. They were interested in identifying

the primary factors that affected overall productivity. Of the eight factors

identified, two related to the difficulty of interacting with the customer, while

V. Shen
MCC
1 of 24

four involvedpersonnelexperienceand qualifications. The other factor related
to the amount of documentationrequired.

. TRW Defence and Space Group [BOEH81]. Boehm collected 63 sets of

project information from managers and fellow researchers. The most

important factor related to the capability of the personnel assigned to the

project. The next three factors involved product complexity, reliability

requirements, and timing constraints. Boehm used the data to develop his

COCOMO cost estimation models.

. ITr Programming Technology Center [VOSB84]. Vosburgh, Curtis,

Wolverton, and four others of ITr studied 44 reports from project managers.

They found that factors under management control accounted for 1/3 of the

variation in productivity. However, factors that were not under management

control, those related to the business area, also accounted for 1/3 of the

productivity variation. No one factor was sufficient to guarantee improved

productivity.

. IBM Santa Teresa Laboratory [SHEN85]. Shen, Yu, and Thebaut of Purdue

University and Paulsen of IBM studied the historical databases of four projects.

They analyzed about 1,400 sets of module-level data and identified several

factors that could serve as predictors for error-prone modules.

Although these studies identified important productivity and quality factors, they

generally did not elaborate the process through which these factors exerted their influence

on the project. The field study reported here was similar to these other studies in the

variety of projects involved, but is different in its emphasis on describing how factors

exert their influence during the design process. This difference was achieved by

collecting a different form of data than had been collected in the studies cited above.

Field Study Design

The field study was designed to gather information from MCC shareholders for

input as requirements to our large systems design environment. We have conducted a set

of interviews at field sites with members of the design team on 19 large projects. Our

purpose was to identify the primary leverage points (i.e., problem areas) in productivity

and quality to attack in our research on design environments.

The application areas of the projects studied included avionics, telephony,

operating systems, and factory automation; and included projects that contained

real-time, distributed, and/or embedded components. These projects were drawn from

nine multi-billion dollar corporations in such businesses as defense contracting, computer

manufacturing, commercial products manufacturing, and telecommunications. On each

project we interviewed the senior systems engineer, the senior software designers, and the

V. Shen
MCC
2 of 24

project manager. Often we were also able to talk with someonefrom testing or quality

assurance, a customer, and a division vice president. The interviews were structured with

a set of questions designed for each type of position interviewed. Yet the structure was

flexible, and was designed to get the interviewee to expound on specific issues or

problems faced in desiging their particular-application. Interviews typically lasted one

hour, but interviews with senior systems engineers frequently ran much longer.

During these interviews we focused on: 1) how requirements came to be known

and how they were changed, 2) how design decisions were reached and how often and

through what mechanism they were changed, 3) what, if any, communication was

conducted with customers, users, contracting officers, etc., 4) how design information was

communicated among the members of the project, 5) how people were organized at

various points during the project, 6) what types of tools were used, and what types should

have been available, but weren't, 7) the nature of the hardest design problems faced and

how were they tackled, 8) how design was represented at various stages, and 9) how

software development was integrated with hardware development.

Observations on Individual Talent

We have identified two types of rare individual talent that frequently develop on

projects. The first is that possessed by superdesigners (typically a senior systems

engineer). Their talent comes only with a deep understanding of the application domain

(avionics, telephony, etc.). It is manifest in their mapping between the behavior exhibited

in the application system (how the jet flies and delivers ordinance) and how the

computational structure (the software) controls it. Thus, they are mapping between

several domains of expertise, only one of which is trained in computer science (the

computational domain). The maintenance and communication across project members of

a consistent representation scheme for this mapping is the crucial element in managing

the development of a system design, and this function is typically performed by the senior

systems engineer, not the project manager. This skill will be extremely difficult to

automate, since it requires mapping across multiple domains of expertise, a capability not

performed well by current expert systems technology.

The second type of rare individual talent is the systems diagnostician. This is a

skill that emerges during the development of the system and is possessed by the

individual who is sought out for answers on why something doesn't work. This skill is

more amenable to automation than that of mapping application behavior into

computational structures, since the information required for developing diagnostic

expertise is available in the structure of the software.

Because of the crucial role that application knowledge plays in the design of a

system, those few who possess it at a level of expertise have tremendous individual

leverage in directing the course of a project. We have seen numerous instances where a

large design team was taken over by a few individuals who controlled the rest of the

design process. That is, if a coalition forms among a few individuals who share a

common model of the behavior of the application or of the computational structure to

V. Shen
MCC
3 of 24

implement it, they can exercise the power of a majority because other team members are

unable to gain consensus for their ideas.

Observations on the Design Process

There are several stages of the design process that are never explicitly represented

in software process models, but which are absolutely crucial to the success of the project.

These danger of leaving these stages out of a process model is that insufficient time is

factored into the project schedule for these activities, and they are therefore frequently cut

short to the detriment of productivity an quality later in the project. The first of these

stages involves the exploration and selection of a format for abstracting and representing

the important features of the application and its behavior. The next stage is the

communication and coordination of a common model of the application behavior and

computational structure for controlling it among the members of the project. Finally,

there is the negotiating and reprioritizing of system features when the underlying tradeoffs

in the design are understood.

The stages described above represent a learning process for most of the members

of the project. The extent of this learning process will differ by the newness of the

technology or the application involved in the project. However, projects are usually

planned as if the learning process is a constant, and is small. The coordination of

common models and understandings among project members is usually assumed to occur

quickly and completely. However, learning is a large consumer of project time in the

early phases. When it occurs incompletely it leads to design and interface errors. The

representation of these activities as stages in design allows them to be estimated more

accurately and planned for purposely.

The amount of time required to learn the structure and behavior expected of a new

application is sufficiently great that we often found the best prototype to be a failed

project. A prototype which does not exercise the full range of application behavior and

function will not provide sufficient learning to design the system correctly. It was through

trying to develop the full system and failing that the underlying structure of the

application domain was sufficiently teased out to support a successful redesign. This is

the "phoenix syndrome" and it is a function of the amount of design experience required

to understand the underlying structure of a new application area.

The following presentation contains an elaboration of one set of our results: The

Top 5 Problems in Large Development Projects.

V. Shen
MCC
4 of 24

t

I

I

I

!

I

I

!

I

I

I

I

i

I

I

I

I

I

i

References

[BOEH81] Boehm, B. W. Software Engineering Economics.Englewood Cliffs, NJ:

Prentice-Hall, 1981.

[SHEN85] Shen, V. Y., T. J. Yu, S. M. Thebaut, and L. R. Paulsen. Identifying

error-prone software - an empirical study. IEEE Transactions on Software

Engineering, 1985, 11 (4), 317-324.

[VOSB84] Vosburgh, J., B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben,

and Y. Liu. Productivity factors and programming environments. Proceedings

of the Seventh Internatioanl Conference on Software Engineering. Washington,

DC: IEEE Computer Society, 1984, 143-152.

[WALS77] Walston, C. E. and C. P. Felix. A method of programming

measurement and estimation. IBM Systems Journal, 1977, 16 (1), 54-73.

V. Shen
MCC
5 of 24

THE VIEWGRAPH MATERIALS

FOR THE

V. SHEN PRESENTATION FOLLOW

ca0
ca0
w
o
0

O.
Z

m

U'J
I11
c_ >"

C_
ILl

I--

Z
O-J

nr" ILl

LLI I--

I11

0
m

IZ
m

a.

ILl

:3
0

O
0

m

m
im

Z

C

L_

.4Z

C

0
C

E

O
!._
a.

o
"6
C

.4Z
0

I--

!._

O
(/3
0
0

V. Shen
MCC
6 of 24

0

V. Shen

MCC

7 of 24

I--

Z

0

11.1

W
r_

_,1

0

LLI

0

LLI

I-,
O gm

O

O
m

e_
X

V. Shen

MCC

8 of 24

L_
IB

Z
0

LLI
r_

O'J

LLi
I-.

t_

LU
0
tr

0
Z
V-
o
LL

t/)
l&l
t/J

W
0
0
tr

im

/

!
I

I

'

Q.

..I ILl

I
V. Shen
MCC
9 of 24

1

I

1-" "-E

0"-- _,._ "" --,.,,_ • 4-.l:::
,.. ,,,,. ..._ ,r-, l,_"_ (13 0 ,- ,,,,, .

L=,_ el _,=,,, i_= s,_ i,,,

V. Shen
MCC
10 of 24

a

ILl
E (!) U) _ tJ)

_ O0 _ __

_ ¢:: .'t=

._- _ ¢::::_
::3 _= _ _-

.-- ." ._ _) u oz.

I _o _ ,-._'.-_

_ o_o_
o
n_==_ I I I I0

l-- !--

V. Shen
MCC
11 of 24

!

i- C

0,. 0 0.. 0..

I- I-

8°o.
::_ "a
CO _'"a

CO
I-" E

1,1.1¢0 _

O ,_
I_ z
O. "

r_

1.1.1

E

,¢1:

EE__0 0

'x

oo o,.o_

I--

"_ o
"E "E

oo

---o g o_

°o_g

¢1)

0
T- o,,! ¢'_ ,_" 1.0

I0 1.0 I,.O0

1.1..I

V. Shen
MCC

12 of 24

¢,..(/'3 c:
I-- o ..¢:

Z Ill ¢: -a

O0 0

re' o ._"13. o .c_
uJ -o __
_1 I-- '-

i ==.-

I11 a
ill

I- (:3 ,-: N ¢6
n-

_1

iI

m

¢-

"13
¢-

¢-
O

im

¢,-

03

t._

¢..
03

im

(D

t._

(D

¢-

>,,

O
m

O
¢-
¢-.
(3
(b
I-,-

V. Shen
MCC
13 of 24

I
m

(..
C
0
u)
Im
(1)

Q.

E

>
mm

0

q...

(-

"0
m

mm

:3
42

0
i--

U)
nmam
mm

im

O
(D
Q.

t-
o

mm

O
mm

m

Q.
Q.

IL_

N
um
m

:3

O
_..
O
O

(D
r-

Q.

"O

:3
O
m

L_

_2.

(.5

i._

O

(I)

E
(I)

m

Q.
E

m

C

im

O
mm

0

0'_

mm

a

(D
O_

C

E
L_
:3

(D
I.I.

V. Shen
MCC
14 of 24

0
im

O
im

Iim

e"

mm

m

0
!..__

v_
_-0

,,- e,,

"IZo
im

o_
.o_

Zo

V. Shen
MCC

15 of 24

C
0

Im

c

x_.

0
0 e,,

0

E C

0 0

r,, r,- e,,
m m m

• • •

V. Shen

MCC

16 of 24

im

;3"

0
Q.
£)..

¢/)

..Q

o
Q..

nm

=ll=,e =ii==0

V. Shen
MCC
17 of 24

I

O3

e-
t_
c-
O

"13
e-
t_

A

o _ _"
•__ ot_ -- t- mRm

!..._

,_ e,,mm

(.1 _-. • __ _)

m

a,,.. ::) I i (.)

a !.- • •

U)

::3
"13
(D
(.,1
0
!__

Q.

"0
r.-
_3

mm
mum

0
n

u)
mum

m
o

I

(n

I,.,

"0
(.-
_3

,,t.d

(/)

(D
m

Q.
0

13.
I

!

0
m

0
t-

O

V. Shen

MCC

18 of 24

e-

t-
o

im

e-
um

0
m

e-

.P.o..a_-
.o_

oi:::
nm

"=

V. Shen
MCC
19 of 24

I

im

a_ o
Q I.- • •

V. Shen
MCC
20 of 24

¢-
im

¢-

Im

00

"0

0
L_

0
im

¢..

,,0

¢..

¢J

V. Shen
MCC
21 of 24

m

0
0

L_

m

¢,.
n
In

,- ._

e,,,,, co)

(1) o
!-, J"' • • •

V. Shen
MCC
22 of 24

0

m

"10
0
E

e,,
im

e,,
L_

m

0

e,,

E
mm

x....

0>,,

V. Shen
MCC
23 of 24

V. Shen
MCC
24 of 24

A Quantitative Analysis of the Impact

of Modern Software Engineering Techniques

on Software Quality and Development Productivity

J. E. Gaffney, Jr.
T. M. Drabant

W. D. Ceely

IBM, Federal Systems Division

Gaithersburg, Maryland

J. Gaffney
IBM

1 of 11

ABSTRACT

The IBM Federal Systems Division has made a considerable capital

investment in its 'software business' through the institutionalization of

an integrated set of modern software engineering techniques and

technologies. This paper addressesthe question, "Has this paid off?" It

does this by considering in a quantitative manner, the value of the use of

modern software engineering techniques/technologies in terms of their

effects on software development productivity and quality. Specifically,

the paper presents a quantitative analysis relating the degree of use of

several software engineering approaches to these topics. This degree is

presented as a single number, the 'software process technology index.'

OVERVIEW

Realizing that technology is the key to attaining consistency in the

software development process in terms of higher productivity and

increasing levels of quality in the resultant software product, management

of the IBM, Federal Systems Division in the late '70's instituted the

development and codification of a set of practices and standards and a

formal education program aimed at institutionalizing their use in all of

FSD's software development organizations. Some of the practices thus

presented in an integrated fashion to FSD technical and management

personnel (indeed, upper level software management people preceded

technical people in the courses) were based in part on extant approaches 1
such as the design and code inspections conceived by Mike Fagan, of IBM.

Other aspects of the body of software technology presented were new, such

as the language (PDL or _rocess Design Language) to be employed to
formally record designs. Indeed, the education program emphasized the

use of formal software process structure with defined activities and
resultant products produced by each. _ The FSD software education program

was the precursor to that of the IBM Software Engineering Institute, a

principal component organizational element of the IBM Corporate Technical

Institutes.

The 'software process technology index' presented here is a measure of the

degree of use of the body of software technologies. By relating this

index to software development productivity and quality, we can obtain an

assessment of the degree to which this investment has 'paid off.' Our

data suggests that higher levels of development productivity and lower

levels of error density (upon initial shipment of the software) are

associated with higher levels of software technology having been

incorporated into the software development process.

The software development process technology index is a number in the range

0-I00. It has been evaluated for a variety of large FSD projects totaling

more than 3.8M source lines of code. These software efforts took place at

two current and one former FSD locations; Gaithersburg, Maryland and

Houston, Texas in the first instance and Wayland, Massachusetts, in the

second. The 'software process technology index' number signifies the

degree of application of the thirteen process and two education attributes

presented in Table i.

J. Gaffney
IBM

2 of 11

Table I. Software Process Technology Index Attributes

ATTRIBUTES

I. INSPECTIONS

2. STRUCTURED PROGRAMMING

3. STRUCTURED DESIGN LANGUAGE

4. FUNCTION MODEL

5. STATE MACHINE MODEL

6. NETWORK MODEL

7. STRUCTURED SPECIFICATION LANGUAGE

8. UNIT TESTING

9. DEVELOPMENT INTEGRATION TESTING

I0. FUNCTION TESTING

ii. SYSTEMS TESTING

12. PERFORMANCE AND LIMIT TESTING

13. USER TESTING

14. MANAGEMENT TECHNOLOGY EDUCATION

15. NON-MANAGEMENT TECHNOLOGY EDUCATION

SCORING

I ,

2.

SCORE EACH ATTRIBUTE 0-16 POINTS

INDEX = (SUM OF THE ATTRIBUTE SCORES) x (100/240)

J. Gaffney
IBM

3of ll

uJ

er

_->-

_uJ _

I,-- ...,I ::)

_ u,,J Q

'-'J _) 0
uJ _ Q::
n,'- a o "

i
Q

l
l
l
l
l

I

I.
l

l
l
l

"l
l
l
l
l
l
l
l
l
l
l
l
l

.l
l
l
l
l
l
l
l
l
l

I
0

X

laJ

£:)

Z

>-
(.9

uJ 0

u_ o (,.)
o_

I

0

_D

0

.O

.o

=

0

J. Gaffney
IBM
4of I1

X

_D

0

i,-I

0

E

w_
Z) ua

i.,- _ w

V-- .a
t,o _l.,J I,L.

ua er O

I
I
I
I

/
/

/
/

/
/
I
I
I

• I

I
I
I

I
I

I
I
I

T

I

I.
I

x_
Z

>-

0

_-o_o
onr ua

.o

.o

"I"
0

o
r.r.l

o
r.._,

r.r-I

Z
o
o

o

;i

J. Gaffney
IBM
5 of 11

The 'software process technology index' is determined by interviewing the

software development manager, and/or appropriate members of the software

development team, about the degree to which each of the fifteen attributes

apply to their project. Each of the attributes, then is given a score in

the range 0-16. The total possible score is 240, therefore. The actual

score is normalized to be in the range of 0-I00 by

multiplying the total actual score by 0.4167 = I00.

240

Thus, the total score may be considered to be a percentage of application

of the attributes of modern software technology as dimensioned by the

attribute list given in Table i. Each of the attributes has four

sub-attributes which are evaluated in the development of an 'attribute

score.' For example, attribute number 5, "State Machine Model," has four

components: category of product covered, amount of product covered,

degree of technological rigor (with which the model is used), and degree

of enforcement of the technology. Each of the other attributes has

sub-attributes, correspondingly appropriate to the aspect of the software

development process with which it deals. More generally, one may think of

each of the attribute scores to be a quantification of the degree of

applicability of that item to the development process indicative of the

degree of technological rigor and the degree of enforcement used to

develop a particular element of software.

Technology Index versus Productivity and Error Content

This section provides some data which relate two key measurables as

indicators of the software and the process used to implement it to the

'software process technology index.' These measurables are the software

error content, and the development productivity. The index values have

been found to have a reasonably strong positive correlation with

development productivity and a relatively significant negative correlation

with the (estimated) error content of the software.

Figure 1 is a plot of relative values of development productivity and

software process technology index; a 'best fit' line to the data is also

shown. The 'relative' values are normalized with respect to one of the

productivity values. Figure 2 is a plot of relative values of estimated

latent (or post ship) errors and corresponding 'software technology index

values,' a 'best fit' line to the data is also shown. The relative values

are normalized with respect to one of the software product's (estimated)

latent error values.

The latent error content of each software product was estimated using a_

tool, coded in BASIC that runs on the IBM personal computer. This tool D'6

estimates the number of errors to be detected in later phases of the

development process as well as the latent error content I based on the
number of errors found during the inspection processes.

Also note that this 'software process technology index' values used in

composing these plots and in computing the correlation coefficients were

computed applying equal weight to each of the fifteen attributes listed in

J. Gaffney

IBM

6 of 11

Table i. It is likely that their effects on productivity and quality are,
in fact, not uniform.

The sample (linear) correlation coefficient of relative productivity with

technology index was found to be 0.697. The corresponding figure for

latent error content and technology index was found to be - 0.582. These

figures, while not high if evaluated on the same basis on which medical

experiments are considered, are reasonable for the computer science field

and suggest the 'value added' by software technology. This was a

principal purpose of the quantitative analysis reported upon here. The

former figure means that 48.6 percent of productivity variation is

explainable by the variation in software process t_chnology index. The
latter figure suggests that 33.9 percent (=(0.582) x 100) of the

variation is explainable by the software process technology index.

These plots and correlation coefficient values do suggest valuable trends,

supporting continued use and expansion of the application of modern

technology because of its potential impact on the business in terms of

supporting the goals of higher productivity and reduced post-ship errors.

The average of about 50 for the software process technology index and

about 62 for the peak found so far in the projects we have looked at

suggest that there is a lot that can yet be done to further exploit the

potential for software process technology in the 'software business.'

Figure 3 provides a plot of relative software development productivity

versus relative latent error content (the independent variables shown in

Figures 1 and 2, respectively); a line fit through the data points is also

shown. The data suggest that higher values of productivity and lower

values of latent error content are associated. The sample correlation

coefficient value is - 0.6724, which means that 45.2 percent of the

variations of one variable is 'explainable' by the other. The negative

correlation between development productivity and latent error content

suggests that higher degrees of software quality need not be realized at

the expense of productivity.

The software process technology index was also evaluated as a function of

time, specifically with respect to the date of delivery of the software

product whose development process was evaluated. A positive trend was

found as shown in Figure 4.

J. Gaffney
IBM

7 of 11

I-:_l IMAI tU

RELATIVE NUMBER

OF LATENT ERRORS

20

15

1,0_

0.5_

\
\
\
\
\

\
\
\
\
\
\

.\
\

\
\

\
\

• \
\

• \ RELATIVE SOFTWARE

DEVELOPMENT PRODUCTIVITY

tl,.._

0 I I I "'-
0.5 1.0 1.5

FIGURE 3 RELATIVE LATENT ERROR CONTENT VS. RELATIVE PRODUCTIVITY

J. Gaffney
IBM

8of ll

_X
t._ w
uat_

ua o
rr ...a
_O

Oua
t,0 I--

I

\

•

\

\
\

\

/
\

\

_1 ! ! I !
C_, O Q Q

_ m m t6

"" _k

ta.
O

t_a
CO

r'_

m

t_

m

CO

m

C'J

CO

m

p,,,,

.-I

Z
"1-
¢.._.
I.ad_
I"--

I.a..I

I..L

J. Gaffney
IBM

9ofll

APPLICATION OF THE SOFTWARE PROCESS TECHNOLOGY INDEX

The Software Process Technology Index and its quantitative relationships

to productivity and quality indicators, such as latent error content, can

be used for various management oriented activities such as:

Estimating the likely effects of potential changes in software

process technology or productivity and quality ("What's the

payoff?")

o Estimating the effect in uncertainty of the applicability of

some element of technology in a certain development situation

("What's the risk?")

o Validating estimates of development costs ("Are the productivity

and technology use levels proposed by the developer

compatible?")

Software developers and management personnel can employ empirically

derived quantitative relationships between the technology index and

productivity or latent (post-ship) error content to validate an estimate

of new software productivity or quality obtained using other
techniques. _'J Also, such relationships between the technology of the

software process and the resultant software product might be used for

planning purposes, such as for predicting the possible impact on software

development productivity or the quality of the delivered software product

of proposed improvements in the technology being used in software

development.

The authors believe both intuitively and from specific empirical

observation that the higher the Technology Index is for a software

development project and its associated process, the higher will be the

productivity of the software engineers and the quality will be better of

the software they develop, in terms of residual latent defects of the

delivered product. Data presented supports this belief.

Specific benefits of higher technology index scores that have been

detected include the following:

o Fewer errors inserted into the developing product.

o Earlier detection/removal of inserted errors.

Better predictability of schedule and cost of development; the

authors deduce that these benefits accrue from using a well

defined and automated software development process. It would

include mechanisms for preventing error insertion (syntax

directed editors, and the like), early error detection, (formal

inspections, static and dynamic design/code analyzer) confidence

raising (automated test generators, coverages measures) and

clearly specified criteria and enforcement mechanisms for entry

into and exit from each phase of development.

J. Gaffney
IBM
10 of 11

I.

a

.

.

Q

,

REFERENCES

Fagan, M. E., "Design and Code Inspections to Reduce Errors in

Program Development," "IBM Systems Journal," Volume 15, Number 3,

1976, Page 182.

Linger, R. C., et al, "Structured Programming: Theory and Practice,"

Addison-Wesley, 1979.

Quinnan, R. E., "The Management of Software Engineering, Part V,"

"IBM Systems Journal," Volume 19, Number H, 1980, Page 466.

Gaffney, J. E., Jr., "On Predicting Software Related Performance of

Large-Scale Systems"; Proceedings of the 15th Conference of the

"Computer Measurement Group," CMG XV, December, 1984, San Francisco.

Gaffney, J. E., Jr. and Martello, S. J., "A Model For Prediction of

Latent Errors Using Data Obtained During the Development Process,"

9th Software Engineering Workshop, NASA, GSFC, November, 1984 (Page

196, "Proceedings").

Gaffney, J. E., Jr., "On Predicting Software Related Performance of

Large-Scale Systems," CMG XV, December, 1984, San Francisco; also

printed in the "Proceedings of the 15th Annual Conference of the

Computer Measurement Group."

J. Gaf_ey
IBM

11 of 11

PANEL #3

SOFTWARE ENVIRONMENTS

E. Spafford, Georgia Tech.
B. Boehm, TRW
T. Wasserman, IDE, Inc.

The MOTHRA Software Testing Environment*

Richard A. DeMillo t

Eugene H. Spafford

Software Engineering Research Center
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
+ 1 404 894-3180

ABSTRACT

The value of software testing in the development of large software sys-
tems is well-documented. Unfortunately, the development and employment
of an integrated test plan is often avoided due to the costs associated with

testing. These costs include more than just capital expenses associated with
obtaining test systems and software. They also include the time and effort
involved in educating personnel in the use of the testing system, the time
taken to run the tests, and the costs of rerunning the tests after errors are
found and corrected. Furthermore, some forms of testing are difficult or
impossible to run incrementally, and they produce results which may be diffi-
cult to use in correcting or enhancing the tested software.

The MOTHRA Environment is an integrated set of tools and interfaces

that support the planning, definition, preparation, execution, analysis and
evaluation of tests of software systems. The support provided by MOTHRA is
applicable from the earliest stages of software design and development
through the progressively later stages of system integration, acceptance test-
ing, operation and maintenance. MOTHRAhas been designed to address some

of the cost concerns mentioned above. Two primary design criteria, in partic-
ular, are significant in this regard. First, the MOTHRA interfaces---particularly
user interfaces---arc high-bandwidth. This allows us to present more informa-
tion during testing and retesting. Coupled with proper design and integration
with familiar displays, it should obviate the need for extensive training to use
MOTHRA.

Sccondly, the overall MOTHRA architecture imposes no a priori con-
straints on the size of the software systems that can be tested in the environ-
merit. The practical meaning of this criterion is that the same architecture is

able to service programs varying in size from individual module_ of less than
10 source lines to fully integrated systems of more than 10 lines. The
human user--the tester--is able to apply comparable functions across a fami-
liar interface as the software being tested evolves in size and complexity by
several orders of magnitude. In fact, the only indicators of size or complexity
that have tics to the MOTHRA architecture are the operating system cost penal-
ties and performance delays inherent in manipulating massive objects. All
other costs and resource demands are under the direct control of the tester.
In most cases, the tester will choose to allow critical resources such as time or

memory to grow linearly with program size and complexity. The tester may,
however, choose to conserve these resources by sacrificing other resources
(e.g., dollars) or even by reducing the fidelity of the test. These are ulti-

E. Spafford
Georgia Tech
1 of 32

mately economic decisions determined by the relative costs of tests and
failures--MOTHRA does not legislate or even favor one kind of decision in

preference to another.

An important mechanism for meeting these criteria is that MOTIIRA is
reconfigurable, allowing the integration of user and system tools with which

the tester may already be familiar, and allowing the system to make use of

different underlying hardware architectures of differing capabilities. We
address this in MOTHRA by the use of thematic tools for software testing. It

has been our experience that software testing is most effective when the test

procedures can be reduced to a set of well-understood and natural activities.

Since MOTHRA supports tests of both very small and very large programs, the
details of the tools that are actually invoked vary in power and scope. How-

ever, even very different tools can implement basic themes that are carried

along throughout the several phases of testing. For example, programmers in
modern development environments interact increasingly with an array of very

powerful source language debuggers. Even though formal testing methodolo-
gies and debugging are very different activities, the debugging theme can be

used as a metaphor to carry the tester from tool to tool as the software being
tested evolves.

One MOTHRA system has been constructed using the AT&T Bell Lab_]
Blit interactive bitmap display terminal running under the control of a UNIX

window manager called Layers. The host environment is a modestly config-

ured VAX 11/780 running UNIX 4.3 BSD. Another version has been imple-

mented on VAXstations _ running Ultrix 1.2 and the X Window System.

However, the architecture of MOTHRA encourages re-hosting. Furthermore,

explicit operations allow MOTHRA processes to spawn parallel and vectorized
processes for execution by a Cyber 205 (or any other powerful parallel

machine).

January 23, 1987

* The work presented in this paper was funded, in part, by RADC contract F30602-85-C-0255.

? The authors may be reached by e-mail addressed to:

Intemet: rad@gatech.EDU spaf@gatech.EDU
uucp: ... l{akgua ,decvax,hplabs,seismo} IgatechI{rad ,spaf_

® UNIXis a registered trademark of AT&T Technologies.

E. Spafford

Georgia Tech
2 of 32

The MOTHRA Software Testing Environment*

Richard A. DeMillo t

Eugene H. Spafford

Software Engineering Research Center

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

+ 1 404 894-3180

1. Introduction

The MOTHRA Environment is an integrated set of tools and interfaces that support the

planning, definition, preparation, execution, analysis and evaluation of tests of software sys-

tems. MOTHRA is designed to be used starting at the earliest stages of software development
and continuing through the progressively later stages of system integration, acceptance test-
ing, operation and maintenance.

The MOTHRA system satisfies three primary criteria. First, its interfaces--particularly

user interfaces--are high-bandwidth. Second, the overall architecture imposes no a priori
constraints on the size of the software systems that can be tested in the environment. While

these seem to be unrelated criteria that address issues at differing levels of detail, they arc, in
fact, closely linked.

Since the ability to process very large integrated software is an explicit design goal,

increasing the effective feedback bit rate 1 along key interfaces is an obvious way to design for
acceptable functional performance. The bandwidth of the interface is simply the feedback bit

rate that it supports. Bitmap displays and windowing are the usual means of increasing the

bandwidth of user displays, for instance. Less obvious are techniques which increase the

effective bit rate by graphical compression, statistical sampling, and analog representations.

In MOTHRA information is highly compressed for presentation to the tester. This provides a
high-bandwidth user interface in which structural and dynamic information is summarized

graphically and exact representations of algorithm and program behavior are replaced by

inexact animations of behavior, higher-order descriptions of process execution, and non-
procedural specifications of program function.

The practical meaning of the second requirement is that the same architecture should be
able to service programs varying in size from _ndividual modules of less than 10 source lines
to fully integrated systems of more than 10 lines. That is, the human user--the tester

should be able to apply comparable functions across a familiar interface as the software being

tested evolves in size and complexity by several orders of magnitude.

In fact, virtually the only indicators of size or complexity that have ties to the MOTHRA

architecture are the operating system cost penalties and performance delays inherent in mani-

pulating massive objects. All other costs and resource demands are under the direct control
of the tester. In most cases, the tester will choose to allow critical resources such as time or

memory to grow linearly with program size and complexity. The tester may, however,

choose to conserve these resources by sacrificing other resources (e.g., dollars) or even by

reducing the fidelity of the test. These are ultimately economic decisions determined by the

1 This use of the term feedback b/t rate is apparently due to S. C. Johnson and refers to the natural
measures of work and efficiency in software development environments. Roughly speaking, the feedback
bit rate is the number of bits transferred across an interface (from host to user) per atomic user interface
operation.

E. Spafford
Georgia Tech
3 of 32

relative costs of tests and failures. MOTHRA does not legislate or even favor one kind of deci-

sion in preference to another.

The key to this approach is to design an environment in which most primitive operations

are implemented as local transformations of data objects. Global operations, on the other

hand, are never applied to these objects but rather are defined in terms of primitive transfor-
mations of more complex atomic objects. 2

MOTHRA satisfies these requirements by first organizing the user interface around a

high-resolution bit map display with adequate graphics and windowing capabilities and,

second, by using the display as a tester's view into a larger (virtual) test context. A view is

defined by a consistent set of object instances that comprise a meaningful state for the
MOTHRA system. Such a state contains sufficient information for applying a set of primitive

operations and generating test-related data and results in the form of new object instances.

The tester need have only a dim idea about the representation or physical location of aspects

of the test which are not in view. As a matter of fact, the total context of a sufficiently com-

plex test may not be meaningful to a software tester at all; in this instance, a large team of
testers will each have differing views of the test, the total context of which is really only

understood by systems engineers.

One of our major concerns has been to make MOTHRA reconfigurable. For the most

part, MOTHRA does not attempt to re-create capabilities provided by the environment in which
it is hosted. The guiding principle has been to structure MOTHRA as a subenvironment DeMi86

of an overall software development or support environment. This implies both a certain clo-

sure and a robust interface. The MOTHRA architecture supports as a function any meaningful
composition of basic functions. This is accomplished through an object-oriented architecture

and user interface. There are several motivations for not viewing MOTttRA as highly

integrated into a more global host environment. Foremost among these are the need for iso-

lation and protection of test-related processes.

This same goal is also addressed in MOTHRA by the use of thematic tools for software

testing. It has been our experience that software testing is most effective when the test pro-
cedures can be reduced to a set of well-understood and natural activities. Since MOTHRA sup-

ports tests of both very small and very large programs, the details of the tools that are actu-

ally invoked vary in power and scope. However, even very different tools can implement

basic themes that are carried along throughout the several phases of testing. For example,

programmers in modern development environments interact increasingly with an array of
very powerful source language debuggers. Even though formal testing methodologies and

debugging are distinct activities, the debugging theme can be used as a metaphor to carry the

tester from tool to tool as the software being tested evolves. For example, program

mutationDeMi78,Budd81, H°wd82 requires testers to construct sets of tests to demonstrate that

certain basic design and programming errors are not present. 3 A fundamental activity in pro-

gram mutation is revealing bugs in the mutant programs. Powerful debuggers are therefore

useful tools during the tests and can be carried along as thematic tools. Many other test
methodologies can, in turn, be reduced to mutation testing.Acre79, BuddS1 Thus, these metho-

dologies can also be supported by the thematic tools.

2 We use the term object to mean a collection of data and operations on that data. An atomic object is
one which allows only atomic operations, in the sense of view atomicity. A1ic83We do not address concepts
like reliability or fault tolerance with the design of MOTHRA. Further, the exact structure of these objects
(active or passive, etc.) does not matter. The object paradigm is intended as simply a design approach to
the construction of Mor_tRa.

3 In this sense, program mutation is a kind of fault detection experiment, as might be carried out to
detect faults in digital circuits. Here, the experiments are applied to software and the fault model is the
space of likely errors that programmers make. The "local transformations" mentioned previously are
simply the fault insertion operations. This technique is general enough to simulate common coverage-
based tests such as statement, branch, and path coverage as well as many other systematic software tests.

E. Spafford

Georgia Tech
4 of 32

l
l

I
l
I

l
I

There are subsidiary issues that are addressed in the design of MOTHRA. Foremost

among these is our belief in capitalizing the software development effort at an appropriate

level. The notion of capital-intensive software engineering and production is not a new one.

For the MOTHRA development group, this point of view has led us to a fairly cavalier attitude

toward trading machine cycles for human effort in conducting a test. Provided only that it

can be justified economically, MOTHRA will spawn machine-intensive tasks and organize them
for execution by a computer resource of appropriate power. This function is called resource-

shifting and, although it is under the control of the tester, MOTHRA organizes and partitions all

test views to accommodate such remote processing.

2. User Views

Testers interact with MOTHRA through a view of the test. The tester's view presents

images representing global test status as well as local objects, attributes and processes. There
may be several views to which the tester has access at any one time, but these views must be

accessed serially and the user cannot have two simultaneous and distinct views of tests.

Some of the objects in view are entirely local and private to the user. For example, the

user may create a temporary file as an aid in deriving appropriate test cases. These objects
are under the complete and total control of the current view, and the user who "owns" the
view can create copy, share, and destroy these objects at will. At the other extreme are those

objects that are shared by all views. These objects are typically under the control of agents

or processes external to MOTIiRA. An example of such a shared object is the source listing of

the software being tested. Such objects might be the property of configuration management

and library tools residing in a host environment. These tools enforce a specified set of rights

to access or modify the shared objects. MOTHRA operations on any shared objects in view
respect the rights inherited from the external owners or managers of these objects. Inter-

mediate to these private and shared objects are the public objects. Objects that are public

represent the visible activity of the test. These objects are generated by testers and by

MOTHRA tools. Public objects may include test cases and results, traceability mappings
between test events and specifications, and error/fault statistics. Some of these public objects
are transient while others are persistent. Occasionally, a transient object (e.g., test case

number 6) affects a persistent object (e.g, the error count for path number 26) and is incor-

porated into the MOTHRA object base according to predefined dependencies, relationships,

and operations in much the same fashion as source code files dependencies are treated by the

UNIX make utility. Feld79 The exact nature of these dependencies define a policy that is unique

to the test and its organization. MOTHRA does not define these policies---it only enforces
them.

In physical appearance, a view is bounded by the edges of a high-resolution bitmap

display. Each window in the view gives the tester access to certain objects and operations
that are currently meaningful. The tester selects windows, objects, and operations with a

mouse that can be used to point to windows and their contents and to pull down menu selec-

tions that are displayed under user control.

MOTHRA interfaces have been implemented for the Bell Labs Blit interactive bitmap
display terminal 4 running under the control of a UNIX window management executive called

Layers, and on Digital Equipment's VAXstation II color and black-and-white display termi-
nals running under the X Window System. Sche86 These particular instances of the user inter-

face are, however, not the only ones possible. The underlying architecture effectively disas-

sociates the physical properties of the display from the tools which the display accesses. In

essence, the display is treated as just another tool in the environment. Other display tools

can be substituted provided that the environment's interface conventions are satisfied.

4 The AT&T 5620 Dot-Mapped Display. See[]'ike84], for example.

E. Spafford

Georgia Tech
5 of 32

2.1. Functions and Operations

We will begin by briefly describing a typical set of functions that the tester invokes.

These functions are generally invoked in a sequence of views, called a run. Runs may be

suspended (saving the complete view at the time of suspension) and resumed at any time.

However, atomic operations are non-interruptible. Therefore, the view that is actually asso-
ciated with a suspended run may contain objects resulting from values returned at a later time

by on-going atomic operations. These are managed by a data- and event-driven harness.

The same mechanism is used to manage multiple views of a test. A single display, for
instance, may be used to invoke a series of functions applied to two different source
modules. Since only one view at a time can be available, the tester can invoke a set of

atomic actions and suspend the run to begin a run for the second module.

2.1.1. Run Initiation

The key shared objects are the source files. 5 A run is initiated by identifying a set of

source files and associating the name of the run with those files. MOTHRA handles the parsing
of the source files to a convenient internal form and also manages the naming conventions for
modules and other syntactic units contained in those files.

2.1.2. Test Level Selection

A test plan may specify any of several levels of testing to be performed. Budd81 Examples
of these levels are statement analysis, predicate and domain analysis, Whit78 and coincidental

correctness analysis. Statement analysis is used for determining that every statement in the

program has been executed and has some effect on the functional behavior of the program.

Predicate and domain analysis are used to determine that all branches and specified paths are

properly selected and that domains associated with these predicates are properly defined.

Coincidental correctness analysis is used to test for the presence of a wide variety of compu-
tational errors, including various arithmetic, data flow, and interface errors. Go°d79

Within each level, the user may also choose a strength of test, represented by a percen-
tage. The exact meaning of a strength value depends on the specific level of testing and cer-

tain subsets of the levels that may be selected. For example, if the user selects the statement

analysis level at 100%, the test can only be passed by constructing tests that fully exercise
every statement in the program. Within the predicate and domain analysis level at 90%

strength, the tester will be required to construct tests that with 90% certainty determine the
boundaries of predicate domains.

The levels of test are defined in terms of certain mutant operators. Budd78 That is, source

code transformations that implement the desired level of testing. For example, in the state-

ment analysis level, mutant operators called san and sdl are used to determine whether each

statement has been executed and to what effect. The san operator replaces each source state-

ment by a special statement called trap that raises an exception. Unless test cases are pro-
vided that raise all possible exceptions, all statements cannot have been exercised. On the

other hand, the operator sdl replaces each statement by a no-op. Unless the transformed

programs behave differently than the program being tested, the test data does not demon-

strate that the given statements have any functional effect on program behavior.

Within the levels, classes of these mutant operators may be selected by the tester. In

these cases, the tester will use the selected operators to implement specialized testing
strategies. Acre79 These selections may be made on the basis of known or suspected

weaknesses, or perhaps upon economic considerations (e.g.,the tester may only have the

resources available to test 25% of the mutants in a specified time span).

5 MCTr//RAis a multi-lingual environment. In the current version, MOFHRAis limited to processing
Fortran 77 (the complete language) and Aria (a large subset). Later versions are planned for C, Modula 2,
Lisp, and possibly others.

E. Spafford

Georgia Tech
6 of 32

Selection of levels, mutant types, and strengths may also be associated with source code

components. For example, during a unit test, the user may select only a certain subroutine

for a particular level and strength of testing. During software integration testing, the tester

may choose an incremental (i.e., bottom-up) strategy in which a given level and strength are
successively applied to units, then to integrating software that calls these subroutines, and so
on.

2.1.3. Test Data Selection and Execution

An important test function is the construction of tests and the execution of the program
on the test data. The creation of a set of test cases is essentially an editing function. The

editing may be under the control of the human tester, who is trying to meet some specified

level of testing (e.g., testing for the presence of all coincidental correctness errors of a given

type), an automated test data generator, a simulator, or even some data capture device that
records digitalized inputs from sensors, operators and communications channels. Creation of

appropriate tests is a key function. We will return to it again after some other supporting
functions have been described.

The actual testing is carried out by executing programs on the test data. The results are

observed by an oracle that decides whether or not the program has behaved properly. The
notion of proper behavior can be quite complex. In unit and module testing, the concept is
usually identified with functional correctness--that is, consistency with a written formal or

informal specification. In later views of a more highly integrated software system or subsys-
tem, correctness is less important than meeting functional or user requirements. The oracle
mediates all of these authorities. If a formal specification is available, the oracle consults it.

If a human user is the authority, the oracle takes advice from this source. If the behavior

cannot be assessed without additional instrumentation, the oracle receives instrumented out-
put and reacts accordingly.

If unacceptable behavior is observed, the policies in force for the test determine the

next course of action. In some cases, the test proceeds after the nature and location of the

error is recorded in a public record. In other cases, the cause of the failure is located and
fixed immediately, resulting in a new view of the test.

2.1.4. Test Status Evaluation

During the testing process, the tester eventually wants to know whether or not testing

has been completed. This determination may be subjectively made or it may be specified

quite precisely and unambiguously. The latter case is obviously the more interesting one in
MOTHRA.

Test status is instrumented and reported as dynamic progress toward meeting test goals

specified during run initiation. The user may be interested in overall progress toward com-

pleting a test specified for a given level and strength. By the same token, the user may be

interested in whether or not a test has been carried out to reveal a specific error or type of

error. In all of these cases, test status can be defined in terms of a single primitive function:
execution of a mutant program on the test data. If the test data--in the judgement of an

oracle--does not distinguish the program being tested from the mutant program, then the
mutant is said to be live and is reported as such. If, on the other hand, the oracle determines

that the mutant behavior varies significantly from the behavior of the original program, then
the mutant is marked dead.

Dynamic information on test progress can be displayed in graphical and tabular format
and is archived in public and shared objects according to test policies enforced by MOTHRA.

2.1.5. Test Data Creation Revisited

Test status evaluation is used to guide the test creation process. The tester may elect to

stop testing at this point or to strengthen the test data by attempting to kill some live mutants.

E. Spafford

Georgia Tech
7 of 32

If all currently enabled mutants have been killed, the tester may wish to create new mutant

types or begin testing a different subroutine.

In this process, the user is aided by the evaluation displays as well as by tools that may

be imported. Suppose, for example, that the tester is attempting to kill all mutants that

replace integer constants n with n+ 1 and n-I (as might be required for domain analysis). In
addition to reporting that these mutants remain alive, _IOTHRA allows the user to examine the
effects of these mutants in the context of the original program or even to browse through

related source lines or live mutants. More powerful test case editing capabilities are available

to create new tests, modify previous tests or to capture the results of other test data genera-

tors. If the user has an especially difficult time in constructing a test that kills these mutants,

he may import a debugger to attempt to exhibit that the mutants are in fact "buggy" versions

of the program.

2.2. The Display

The technology used in the display and the material presented in that display are critical

to the design of MOTHRA. The MOTnRA window layout presents the user with a view of all the

objects that were described above. Based on our classification of objects we have defined the

following subwindows (displays) within the MOTHRA display:

• Mutant Status Manipulation: The icons that define and reference specified mutant

types, aggregations of these types, and the levels and strengths of tests that can be
defined from them.

• View Status: The graphic symbols or textual displays that represent the progress of
the current view toward test objectives, or other measures of completion.

• Test Cases: Any object--whether constructed by the tester or captured from an
external source such as a simulator--that is used to stimulate the software being

tested.

• Source Language Representations: Each view of the test defines a fragment of the

software being tested, and a source language representation of such a fragment is a

high-level description of the fragment. By definition, the most primitive constructs

in any source language representation are the source lines of code; all other
representations associate text or graphical information with sets of source lines.

• Command Line: Terse communications, prompts and system status reports are

directed to a degenerate (one line) window called the command line.

Testers may query and modify attributes displayed in any of these subwindows. Tran-
sient information and data are displayed by whatever means is most appropriate for the

display tool. In our implementation, such transient data are displayed in windows that over-

lay (and may sometimes obscure) the fixed windows just described. An example of a tran-

sient object might be one of the thematic tools mentioned in Section 1. The tester must make

any explicit interfaces and functional dependencies between transient objects and MOTHRA

objects since none are implicit in our design of MOTnRA.

The MOTItRA Display handles "global" information in two distinct ways. First, it gives

the tester access to objects not in the current view. For example, to initiate the testing ses-

sion, the tester provided file names that were meaningful to the host's file system, even

though MOTHRA does not contain file management capabilities. Second, simply touching and

changing the attributes of objects in the Display can have affects on the other windows in the
view--thus the Display encapsulates a set of "global" relationships for the rest of the view.

For example, selecting a random sampling of substitution mutants results in a propagation of
mutant status information to the other subwindows, such as the View Status subwindow.

Attributes of objects displayed in each window can be modified dynamically, so that,

for instance, the display format of the source language text can be changed to bring the live
mutants into view. More complex interactions between view and source windows are

E. Spafford

Georgia Tech
8 of 32

possible. For example, the tester can point to a histogram "bar" in the view window and

cause the corresponding live mutants to appear in the source window.

3. Subenvironment Architecture

Supporting the user display is a collection of tools bound together by an information

interface and hosted on another environment. Specified access pathways and ports allow
information, commands, and signals to flow between MOTHRA and the host environment.

While most of these have operating system dependencies, they have been hidden in higher

level constructs that appear to be primitives to MOTHRA. Although the overall design is
robust, implementing these primitives is easier in some environments than in others.

For example, one of the reasons for conceiving MOT/-/RA as a subenvironment of a host

is the need to control and manipulate faulty processes. Unlike most programming environ-

ments, the intent of MOTHRA is to execute faulty processes. While most software developers
would like to consider failure to be an abnormal condition, the MOTItRA user deliberately
seeks it out through the process of killing mutant programs. Many of the failures induced in

this way are benign (the mutant program runs to completion but delivers incorrect results).
Approximately one fourth of the mutants generated, 6 however, are not benign. They gen-
erate processes that run seriously amok and must be tightly controlled. The modes of failure

in these processes run from simple errors such as division by zero to storage allocation and

concurrency errors that could harm unrelated processes if allowed to proceed unconstrained.

An important aspect of these definitions is that the system defines a process at each time

n, rather than just a state. This is a key idea for several reasons. First, the atomicity of
actions may result in several intermediate states before any other MOTHRA function can be

applied. Second, the display architecture and logical driver together constitute a data and

event driven network of autonomous processes and unique definitions of sequences of states

may not be possible in certain circumstances, whereas definitions of sequences of processes

can be defined in terms of the external actions needed to invoke them. Third, error recovery

and roll-back procedures as well as look-ahead optimization are easier to define and imple-

ment. Fourth, we anticipate the use of MOTHRA in conjunction with nondeterministic system
testing procedures; recording and replaying test scenarios and associating internal test events

with software inputs is relatively easy to implement if each major time step of the environ-
ment corresponds to a history of states.

The information interface is the MOTHRA backplane. In many respects, MOTHRA com-
bines the features of both open and closed programming systems. MOTHRA is closed in that

the fixed windows of a view and the objects, attributes and operations associated with them

define an Entity-Relationship (E-R) model Cherd0 that cannot be modified. Thus the process
monitors, test data generators, instrumentation and other tools associated with the fixed win-

dows can always count on certain dependencies and relationships among essential objects in
view--ensuring, for instance, reproducible behaviors.

On the other hand, MOTHRA is open to the extent that any E-R model-respecting tool
whatsoever can be attached to the backplane. Editing is a simple example of a transient

activity that can be imported in this way. Any file can be edited by any editor provided only:

• the file is editable by the editor in question;

• the point in time at which the editor is invoked does not preempt or interrupt an
action defined to be atomic in the E-R model;

• no attributes or properties are introduced by the editor's actions or side effects that

contradict attributes or properties of the E-R model.

In other words, any tool can be imported to the user's view, provided that the user is

able to plug (or wire) that tool into the backplane. This is a particularly valuable design for a

6 In our testing so far.

E. Spafford

Georgia Tech
9 of 32

testing environment, since many testing tools share common tool fragments. It also permits

some novel interactions between the host and MOTHRA environments. A software developer,

for example, can attach a mutant generation and execution capability as a background activity

during coding and debugging. This is a generalization of Weinberger's dynamic instruction
counting tool. Wein84 The underlying E-R model allows the processes of mutant generation

and execution to be decoupled from the integrating framework provided by the display archi-

tecture (recall that the display technology is simply another tool that plugs into the back-

plane). One application of this capability is the inexpensive maintenance of test status
throughout the development process by keeping killed mutant status information for object
code.

4. Resource Shifting

The process of creating and executing mutant programs on the test cases "rl, T2,...,_'k can
be done serially in one of two logical orderings. The first ordering would be to apply the test
cases, one at a time, to each live mutant and observe the results. The second ordering is

where all test cases are applied to each live mutant and the results observed. All such serial

processes consist of on the order of g × k independent transactions, where pL is the number of
enabled mutants and k is the number of tests to be executed. 7 In either case, we are

presented with a series of independent tasks.

Simply spawning these independent tasks to m independent parallel processors reduces

the elapsed time for processing the test cases against the mutants to:

_×k
+ OVERItEAD.

m

Since the OVERHEAD can be compressed to one of the serial protocols mentioned above, this

amounts to a linear speed up on independent parallel processors. However, large blocks of
these tasks have an internal structure that can be exploited to achieve more impressive speed

gains.

For example, the substitution mutants of a simple assignment (using C-like notation)

can be written in one of the following forms:

*lhs = operand 1 x operand 2 => *lhs' = operand I × operand 2 (1)

*lhs = operand I × opcrand 2 => *lhs = operand'l × °perand2 (2)

*lhs = operand I x operand 2 => *lhs = operand 1 × operand' 2 (3)

Furthermore, the order in which these mutants appear is fixed once the program is known.

At the time mutgen returns a value, the mutant statements (1)-(3) are equivalent to a vector

operation

LHS = OPERAND 1 _ OPERAND 2,

where @ is the vectorized binary operation and the vectors LHS[i], OPERANDI[i], and

OPERAND2[i] are defined respectively to be *lhs, operandp and operandz[i] if i = 0. For
i _ 1, the vector positions are defined by the mutant definitions (1)-(3). Thus, the substitu-

tion mutant executions are equivalent to a series of vector operations (followed by inner pro-

duct operations to determine which mutants have been killed).

Interleaving the generation of vectorized expressions with parallel tasks can result in a

multiplicative speed-up. This is especially attractive for the case of substitution mutants since

for a typical n line program, the (worst-case) number of substitution mutants grows

7 Some simplification is possible by "short-circuiting" an iteration once a mutant has been killed (there
is no need to apply further test cases to a dead mutant), but we will ignore that and other optimizations in
the following presentation so as to make it more accessible.

E. Spafford

Georgia Tech
10 of 32

proportional to

n

(,)
which is the dominant term in the expression denoting the worst-case complexity of mutant
get_eration a_d execution. For moderately sized software systems (e.g., systems for which

10 _ n _10-) complete tests have required several days of dedicated computer time. With
interleaved parallel tasking and vectorization on processors with MIPS rates in the 50-100

range, a thousand-fold speed-up is possible, bringing these tasks to within the reach of real-
time responses.

This has led us to consider seriously the possibility of shifting resources to accommodate

such processor intensive tasks. MOTHRA is designed to be hosted on hardware configured with
multiple machines of varying capabilities.

For example, one host might consist of the bitmap displays, object definitions, and file

services required for tester interaction. We assume also that whatever programming environ-

ment serves as the host environment for MOTHRA can be accessed through this host. In partic-
ular, editing and other transient functions do not make any demands on subsequent layers.

A second host consists of large-to-medium granularity parallel processors. Each of

these processors operates on a common memory with appropriate programmer control of

parallelism. The tester maymwhen local resource thresholds are exceededm shift gears. The

result is the spawning of blocks of independent parallel tasks for each of the processors.

Coordination of destination processors and the collection and collation of the results of pro-
cess execution is the responsibility of a process that resides on the first host. It is intended

that the tester have complete control over the allocation of parallel resources. At present,
however, this control is restricted to partitioning the serial tasks mentioned above in some
appropriate manner.

In the same manner, vectorization is carried out as described above and the vectorized

code and test cases are sent to a third host. Since the result of the vector operation is itself a

vector, only this result is returned from this host. The precise format of vector operations is

a machine-dependency that cannot be easily removed, although we anticipate that UNIX sys-
tems capable of 100-500 scalar MIPS with powerful vector extensions to C will become

widely available. For the current version of MOTHRA, however, we are adopting a conserva-

tive approach. For example, long chains of data dependencies within loops are being parti-
tioned to avoid vectorization difficulties.

The experimental performance studies of resource-shifting will be reported in detail
elsewhere.

$. Conclusion

The MOTHRA environment described in this paper is currently implemented and running
in a multi-host environment consisting of Digital Equipment VAX 111780 and 111750 mini-

computers, VAXstation II workstations, AT&T Blit bitmap display terminals and a Control

Data Cyber 205 supercomputer. Version 1.0 of MO_HRA contains at least primitive imple-

mentations for the functions described above, although many of the most desirable integrat-
ing features (e.g., automating the transmission of vectorized processes from the VAX host to

the Cyber 205) are not fully functional. Thus far, MC_I'HRA has been used to test Fortran 77

programs in the 20-500 line range. With current memory and other constraints (there are no

MOTHRA design constraints) complete testing of 1,000-10,000 line Fortran programs seems

well within the capabilities of Version 1.0.

A second version that exploits optimization opportunities and will b¢ tailored to

extremely large-scale applications is under design.

Although user experience with MOTHRA is currently confined to our development group,

we expect Version 1.0 to be available on a limited scale to a community of 30-50 software
E. Spafford

Georgia Tech
11 of 32

testers. In spiteof thecarewehavetakento ensurethat fundamentaldesignconceptsreally
matchthe needsof realisticsoftwaretesting,we anticipatethat manyhitherto unidentified
issueswill surface.Theseexperienceswill beanalyzedandreportedat a laterdate. We are
optimistic,however,that a softwaretestingenvironmentarchitectcdasdescribedabovewill
deliveracceptablelevelsof computingresourcesto the importantproblemof howto testand
evaluatethe qualityand reliability of large softwaresystems.Furthermore,we anticipate
that thesystemwill beeasilylearnedandeasilyused,thusleadingto improvementsin testing
andsoftwareproduction.

References

Acre79.
Acree,A. T., R. A. DeMillo, T. A. Budd,R. J. Lipton, and F. G. Sayward, "Mutation

Analysis," TECHNICAL REPORT G1T-ICS-79/08, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA, 1979.

Allc83.

Allchin, J. E., "An Architecture for Reliable Decentralized Systems," PH.D. DISS.,

School of Information and Computer Science, Georgia Institute of Technology, Atlanta,

GA, 1983. Also released as technical report GIT-ICS-83/23

Budd78.

Budd, T. A., R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "The Design of a Pro-

totype Mutation System For Program Testing," PROCEEDINGS NCC, AFIPS CONFERENCE

RECORD, pp. 623-627, 1978.

Budd81.

Budd, T. A., "Mutation Analysis: Ideas, Examples, Problems, and Prospects," in Com-

puter Program Testing, ed. B. Chandrasekaran and S. Radicchi, pp. 129-148, North-

Holland, 1981.

Chert80.

Chen, P. P., Entity-Relationship Approach to Systems Analysis and Design, North-

Holland, 1980.

DeMi78.

DeMillo, R. A., R. J. Lipton, and F. G. Sayward, "Hints on test data selection: Help

for the practicing programmer," COMPUTER, VOl. 11, no. 4, pp. 34-43, IEEE, April
1978.

DeMi86.

DeMillo, R. A., "Functional Capabilities of a Test and Evaluation Subenvironment in
an Advanced Software Engineering Environment," TECHNICAL REPORT GIT-SERC-

86/07, Software Engineering Research Center, Georgia Institute of Technology,

Atlanta, GA, 1986.

Feld79.

Feldman, S. I., "MakemA Program for Maintaining Computer Programs," SOFTWARE
PRACTICE AND EXPERIENCE, vol. 9, pp. 255-265, 1979.

Good79.

Goodenough, J. B., and S. L. Gerhart, "Towards A Theory of Test Data Selection,"
TRANSACTIONS ON SOFTWARE ENGINEERING, vol. SE-1, no. 2, pp. 156-173, IEEE, June

1979.

Howd82.

Howden, W. E., "Weak Mutation Testing," TRANSACTIONS ON SOFTWARE ENGINEERING,

vol. SE-8, no. 4, pp. 371-379, IEEE, July 1982.

I
I

I
l

l
I
I

E. Spafford

Georgia Tech
12 of 32

Pike84.

Pike, R., "The Blit: A Multiplexed Graphics Terminal," BELL LABORATORIES TECHNICAL

JOURNAL, vol. 63, no. 8, pp. 1607-1630, AT&T, October 1984.

Sehe86.

Seheifler, R. W., and J. Gettys, "The X Window System," TRANSACTIONS ON GRAPHICS,

no. 63, ACM, 1986.

Wein84.

Weinberger, P. J., "Cheap Dynamic Instruction Counting," BELL LABORATORIES TECHNI-

CAL JOURNAL, vol. 63, no. 8, pp. 1815-1826, AT&T, October 1984.

Whit78.

White, L. J., E. I. Cohen, and B. Chandrasekaran, "A Domain Strategy for Computer

Program Testing," TECHINCAL REPORT OSU-CISRC-TR-78-4, Ohio State University,
1978.

E. Spafford

Georgia Tech
13 of 32

THE VIEWGRAPH MATERIALS

FOR THE

E. SPAFFORD PRESENTATION FOLLOW

F--
Z
b_J

Z
O

Z
Iii

(_9
Z

k--
6/3
Iii

Ill
7v"
<_

k--
h_
O
(/3

O

hA

F--
E. Spafford
Georgia Tech
14 of 32

I

2;
laJ
I--

I--

ILl 121
O ts.l
Z a
i,i Z
a i,i
-- I--
i, Z
Z --.
0

ILl

LI.I

z_m

LI.I

._1

0

(/I
LI.I
Cl
0

LI.I
l--

rl,"
I--
O0
Z
0

ILl
¢'I

ILl

0

0
carl
Z

I--
Z

la.l

0

rY I..d
r_

a=D
Z _j

a
zl.u
EO

tl.

E. Spafford

Georgia Tech
15 of 32

_L

Or)
(I)
W

O

rl

I--
Z
ILl

O.

C_

I--

d

O

.<

!

I--
0')
ILl

E. Spafford
Georgia Tech

16 of 32

COSTS

COS TS DUE TO TES T/NG

COST OF ERRORS

E. Spafford

Georgia Tech
17 of 32

|

|
--__

S
L_.J

t--

25
YJ
N_

Z
0

t--
(_)
W
0_(

0
0

f2Z
0
F2E

½J

EL

0

I--
tO
0
0

Q

o

d_
n--

I--
(/3
0
0

w

t--

w
nl I I I I I

"_- o,I 0 00 tO ¢xJ 0

Z
0

n_
W
0_
0

W
I--
<
0_
CD
W

Z

0O
QJ

I

0

LI_
__1

Z
0

(/3
LJ
C_

klJ
n
UI

0
W
02

E. Spafford
Georgia Tech
18 of 32

F-
Z
W

Z
0

Z
W

t_
Z
H

F-
tO
W
F-

W
C_
O7.

}--
b_
0
LO

CK
I
F-
0

W
I <

_t

B _m

|

a

E. Spafford
Georgia Tech
19 of 32

gg

I

0
_C

N-
U
W
O_

(37

W
W
O_
I
N-

ki

o_

o_

lu_.

qD

C_

(J]

(J3
l Lu

tO Lu

LU

O_
CD

qD

I

LU

O_

LO
tL) 6_

t

q_

Lu

Lu
k_ ..-d

_l LLI

Q Q
6---.I---i

o_ o_
o_ q_

Q
I Q

Lu

03

E. Spafford
Georgia Tech
20 of 32

" __ I
z
0 l I
rn

E. Spafford
Georgia Tech
21 of 32

O3
t.d

1.13
3_

O
O

Z
0

_E
0
C_

_ba
.,,J

co

C.b

c_
b.j

_ba

% %

.W- .W.

E. Spafford
Georgia Tech
22 of 32

>-
CO
CE
W

03
_-4

03
.ry
£E
W

Z
F-4

b_
H

_-E
03

W
N
I--.'1

.._1
rr-
i---
i--4

13_
CE
r,..3

CO
I--4

_--
Z
W

Z
O

Z
W

W
I

W
(_3
Z
O

in

i,i

u

I--
Z
I,I

W

0

n

i-i I,I
._IN

I-I

l--Itj _-i
Z
i-i

Q.
I--I

E. Spafford

Georgia Tech
23 of 32

E. Spafford
Georgia Tech
24 of 32

0
. _-

Z

a _

Z Z

w >7...a
w

<

0

"IT

mini

W I

_..
m

m

b

m

m

m

0

I I

c_

t/3

I_l..j

W

7.
0

W

I--

Q
r_

tN

E. Spafford
Georgia Tech
25 of 32

I

I
I
I
I

i
I
I

li
i

TECHNIQUE

Given: program P
fesf data T

Construct: a set of MUTANT

programs M(P,)

o f programs 71q

to P

results Olq ,

E. Spafford
Georgia Tech
26 of 32

U3
>-
U3

Z
O

<_

O

<(

0
k-

<(

+

1
q_

0
q_
q_

ca I

4

(S)

ta

tq

E. Spafford
Georgia Tech
27 of 32

.:.:.........,..

MOTHER

Fortron-?7 Mutotlon Sxstem

5oi't_ore Engineerins _esearch Center

Ceorsia Institute of Technolosx

Atlanta, C_ _033Z

:::::;:":_'_:_':':::::::' :::':':::_::::_:_":_:_{'.;_':__ :'._:_.:__:_:_:::.::_:':_?:.:'::._:'::__:_:.:.;:_.:__:.:.:.::___::-:::.:.::__._:.::.:.:':..:.::.:.:'.:.::.:.:_-_::._::::.:i_,";:.::{i

E. Spafford
Georgia Tech
28 of 32

INIEGER n(lo)_ _

00 ZOO J-I,N-_
DO 100 J-I,N-J

IF (h(I)_LE. NEJ)) 00T0 I00_

TEMP-h (I)

A[J)-TEt_

I00 CONTINUE

ZOO CONTINUERETURN
ZN[)

! iL)_splay tiymbol labial
: I Oisplny CodeFi]e i

i
1 SUBROUTINE SELECT(L,N)

1[NTEgER L(N),N
INTEGER I.J.I_X,TEI_

J=N

".' IF [J.LT.Z) COTO 99
MhX-J

5 _F (I.LT.I) I;oro Z(_
.IF {L(1).LE.L.tM_X)._ GOTO i_

C=!-_
:i SOTO 5

iZ{_ _[_MI'=L_,"MAX
! :_(MAX] =L(J)
i "- [J]=TEM!-"

J=j-_.

! :]0T0 _.

i'J9 :_ETURN
ENE

SUOROU'flNE INSERT (L,N)
,i INTEGER L(N).N

ii INTEGER KEY,L.i

. J=ZIF (J.GT. N3 COrD _9

i KEY-L (J)
i I-J-1

E

;Mutant Profiles i
I Specify Mutants i

For L : Z

Enter Z vnlue_ _or" _h_
nrray L: 0 -1
Enter' value ('or N: 2

T_st Case _

Runnin9 Or ioinnl Pro_rn_

Input Values for $as_ cBse S°
L O -_

NE

Execution stopped because;
Normal Termination°

There _ere ZZ statement_
executedo

V "| Director_ i

Output ai__,S
L -I (_ [Edit lest Ease }
NZ

Is thls the correct OUtpUL

it'
...................... 1

E. Spafford
Georgia Tech
29 of 32

putc(]" • : . .p_utc_(.l •
puts().•
spclntr().
sp('lntn() _

• • , • • • • • * •

:Ct. . . ._d • _ . • • •

E. Spafford
Georgia Tech
30 of 32

__ o o o o o _ <o

E. Spafford

Georgia Tech
31 of 32

_Q

t-

o

(y) '_

I"

--. o o _ o o Q- o o

•W" "W" "W"

E. Spafford
Georgia Tech
32 of 32

A Value-Chaln Analysis of Software Productivity Components

Barry W. Boehm, TRW Inc.

Phillip N. Papaccio, TRW Inc.

Summary

This paper summarizes a recent value-chain analysis of software productivity

components at TRW. It explains the various value chain components and per-

centages, assesses their implications for improving software productivity, and

elaborates on some further data analysis performed to address one of the major

value chain components: rework costs.

1. The Software Product Value Chain

The value chain, developed by Porter and his associates at the Harvard Busi-

ness School [Porter, 1980; Porter, 1985], is a useful method of understanding

and controlling the costs involved in a wide variety of organizational enter-

prises. It identifies a canonical set of cost sources or value activities, represent-

ing the basic activities an organization can choose from to create added value

for its products. Figure 1 shows a value chain for software development

representative of experience at TRW. Definitions and explanations of the com-

ponent value activities are given below. These are divided into what [Porter,

1985] calls primary activities (inbound logistics, outbound logistics, marketing

and sales, service, and operations) and support activities (infrastructure, human

resource management, technology development, and procurement).

Primary Aetlvltles

Inbound logistics covers activities associated with receiving, storing, and dissem-

inating inputs to the products. This can be quite large for a manufacturer of,

say, automobiles; for software it consumes less than 1% of the development

outlay. (For software, the related support activity of procurement is also

included here).

Outbound logistics covers activities concerned with collecting, storing, and physi-

cally distributing the product to buyers. Again, for software, this consumes less
than 1_ of the total.

B. Boehm
TRW
1 of 18

Figure 1. Software Development Value Chain

INFRASTRUC•URE

HUMAN RESOURCE MANAGEMENT •

• ECHNOLOGY DEVELOPMEN• 3(81

MANAGEMENT 7 1 \

OA. CM S O
U

30 •
B
0

t U SERVICEI
J

S

i 1

M I
A N
R O
g O

N.

I D

N L
G :0

t, !G

1:

I
$ S
A T
L !
E C
S S

4

RQTS
PRELIM.
DESIGN

10

DETAILED
DESIGN

REWORK

I

I

CODE AND
UNIT TEST

I

II0

13

7

INTEGRATION
AND TEST

N
D

L
O
G
I
S
T
I
C
S

B. Boehm
TRW

2 of 18

Marketing and sales covers activities associated with providing a means by

which buyers can purchase the product and inducing them to do so. A 5%

figure is typical of government contract software organizations. Software pro-

duct houses would typically have a higher figure; internal applications-

programming shops would typically have a lower figure.

Service covers activities associated with providing service to enhance or main-

tain the value of the product. For software, this comprises the activities gen-

erally called software maintenance or evolution. For simplicity, Figure 1 avoids

including a service cost component in the development value chain; a life-cycle

value chain is presented and discussed as Figure 2 below.

Operations covers activities associated with transforming inputs into the final

product form. For software, operations typically involves roughly four-fifths of

the total development outlay.

In such a case, the value-chain analysis involves breaking up a large component

into constituent activities. Figure 1 shows such a breakup into management

(7%), quality assurance and configuration management (5%), and the distribu-

tion of technical effort among the various development phases. This phase

breakdown also covers the cost sources due to rework. Thus, for, example, of

the 20% overall cost of the technical effort during the integration and test

phase, 13% is devoted to activities required to rework deficiencies in or reorien-

tations of the requirements, design, code, or documentation; the other 7%

represents the amount of effort required to run tests, perform integration func-

tions, and complete documentation even if no problems were detected in the

process.

Support Activities

Infrastructure covers such activities as the organization's general management

planning, finance, accounting, legal, and government affairs. The 8% figure is

typical of most organizations.

Human resource management covers activities involved in recruiting, hiring,

training, development, and compensation of all types of personnel. Given the

labor-intensive and technology-intensive nature of software development, the

3% figure indicated here is a less-than-optimal investment.

Technology development covers activities devoted to creating or tailoring new

technology to improve the organizations products or processes. The 3% invest-

ment figure here is higher than many software organizations, but still less than

B. Boehm
TRW
3 of 18

Figure 2. Software Life-Cycle Value Chain

I_rV1ELOPMEN'T

IILrWORK

m

m

m

DD CA t&T

LrT

SERVICE

|"MAINTENANCE"I

B. Boehm
TRW

4 of 18

optimal as an investment to improve software productivity and quality.

Margin and Service

Margin in the value chain is the difference between the value of the resulting

product and the collective cost of performing the value activities. As this

difference varies widely among software products, it is not quantitatively

defined in Figure 1. As discussed above, service is best quantified as a software

life-cycle value chain as shown as Figure 2, with roughly 70% of the value

activity devoted to service or evolution-related activity. However, since the

component activities involved during evolution do not differ markedly from

those which go on during software development, we will continue to focus on

Figure 1 as a source of insights into understanding and controlling software
costs.

Software Development Value Chain Implications

The primary implication of the software development value chain is that the

"Operations" component is the key to significant improvements. Not only is it

the major source of software costs, but also most of the remaining components

such as "Human Resources" will scale down in a manner proportional to the

scaling down of Operations cost.

Another major characteristic of the value chain is that virtually all of the com-

ponents are still highly labor-intensive. Thus, there are significant opportunities

in providing automated aids to make these activities more efficient and capital-

intensive. Further, it implies that human-resource and management activities

have much higher leverage than their 3% and 7% investment levels indicate.

The breakdown of the Operations component indicates that the leading stra-

tegies for cost savings in software development involve:

Making individual steps more e_cient, via such capabilities as

automated aids to software requirements analysis or testing.

Eliminating steps, via such capabilities as automatic programming or

automatic quality assurance.

Eliminating rework, via early error detection, or via such capabilities

as rapid prototyping to avoid later requirements rework.

B. Boehm
TRW
5 of 18

In addition, further major cost savings can be achieved by reducing the total

number of elementary Operations steps, by developing products requiring the

creation of fewer lines of code. This has the effect of reducing the overall size

of the Value Chain itself. This source of savings breaks down into two primary

options:

Building simpler products, via more insightful front-end activities such

as prototyping or risk management.

Reusing software components, via such capabilities as fourth-

generation languages or component libraries.

2. The Software Productivity Improvement Opportunity Tree

This breakdown of the major sources of software cost savings leads to the

Software Productivity Improvement Opportunity Tree shown in Figure 3. This

hierarchical breakdown helps us to understand how to fit the various attractive

productivity options into an overall integrated software productivity improve-

ment strategy.

Further discussions of the various productivity options are provided in [Boehm,

1986a]. As one example involving further data analysis, we studied the distribu-

tion of rework costs on a sample of 1378 problem reports on two large TRW

software projects. These studies indicated that rework instances tend to follow

a Pareto distribution: 80% of the rework costs typically result from 20% of the

problems. Figure 4 shows some typical distributions of this nature from recent

TRW software projects; similar trends have been indicated in [Rubey et al,

1975],[Formica, 1978], and [Basili-Weiss, 1981]. The major implication of this
distribution is that software verification and validation activities should focus

on identifying and eliminating the specific high-risk problems to be encountered

by a software project, rather than spreading their available early-problem-

elimination effort uniformly across trivial and severe problems. Even more

strongly, this implies that a risk-driven approach to the software life-cycle such

as the spiral model [Boehm, 1986] is preferable to a more document-driven
model such as the traditional waterfall model.

B. Boehm
TRW
6 of 18

Figure 3. Productivity Improvement Opportunity Tree

IMPROVE

PRODUCTIVITY

__ MAKE
PEOPLE MORE
EFFECTIVE

___ MAKE STEPS
MORE

EFFICIENT

___ ELIMINATE
STEPS

ELIMINATE
REWORK

___ BUILD
SIMPLER

PRODUCTS

REUSE

COMPONENTS

EINCENTIVES, STAFFING. TRAINING

FACILITIES

MANAGEMENT

SOFTWARE TOOLS. ENVIRONMENTS

WORKSTATIONS

OFFICE AUTOMATION

AUTOMATED DOCUMENTATION. QUALITY ASSURANCE

AUTOMATED PROGRAMMING

KNOWLEDGE-BASED SOFTWARE ASSISTANT

INFORMATION HIDING. MODERN PROGRAMMING PRACTICES

SOFTWARE COMPUTER AIDED DESIGN

FRONT-END LANGUAGES

INCREMENTAL DEVELOPMENT

RAPID PROTOTYPING

PROCESS MODELS

COMPONENT LIBRARIES

APPLICATION GENERATORS

FOURTH-GENERATION LANGUAGES

B. Boehm

TRW

7 of 18

|

!

|
Figure 4. Rework Costs are Concentrated in a Few High-Risk Items

|

I

I

100 __._ I

TRW PROJECT B ____

.o / I

% OF _ _ (373 SPR';)

COST
TO

FIX I
SPR's

I
2O

0
0 10 2O

!
I I I I I I I I I

30 40 BO QQ 70 80 90 100

% OF SPR's (SOFTWARE PROBLEM REPORTS) I

I
I

B. Boehm I
TRW
8 of 18

!

[Basili-Weiss, 1981]. V. R. BASILI and D. M. WEISS, "Evaluation of a

Software Requirements Document by Means of Change Data", Proceedings,

Fifth International Conference on Software Engineering, IEEE, March 1981,
pp. 314-323.

iBoehm, 1986]. B. W. BOEHM, "A Spiral Model of Software Development

and Enhancement", Proceedings, IEEE Second Software Process Workshop,

A CM Software Engineering Notes, March 1986.

[Boehm, 1986a]. B. W. BOEHM, "Understanding and Controlling Software

Costs", Proceedings, IFIP 86, North Holland, 1986.

[Formica, 1978]. G. FORMICA, "Software Management by the European

Space Agency: Lessons Learned and Future Plans", Proceedings, Third

International Software Management Conference, .MAA/RAeS, London,

October 1978, pp. 15-35.

[Porter, 1980]. M. E. PORTER, Competitive Strategy: Techniques for

Analyzing Industries and Competitors, New York: The Free Press, 1980.

[Porter, 1985]. M. E. PORTER, Competitive Advantage, New York: The

Free Press, 1985.

[Rubey et al, 1975]. R. J. RUBEY, J. A. DANA, and P. W. BICHE, "Quan-

titative Aspects of Software Validation", IEEE Trans. Software Engineer-

ing, June 1975, pp. 150-155.

B. Boehm
TRW
9 of 18

[-
z

• • • • •

B. Boehm
TRW
10 of 18

X_go-z

E
w

0 2) I-. mO _) Z 0
Ill

e o Z
0
m

I-)-

EuJ
0""
*"a
I-. Z

DI-
Zm

I

--ZmO:_ZQ --, 0 ¢_ -- m I-- -- 0 m

0
X_[_wl..--KO J mq[-,ww

B. Boehm
TRW
11 of 18

U

_ ooo ooooo

• •

",,,,I

B. Boehm
TRW
12 of 18

B. Boehm

TRW

13 of 18

||

i '

B. Boehm
TRW

14 of 18

B. Boehm

TRW

15 of 18

- il

B. Boehm
TRW
16 of 18

¢,n

B. Boehm
TRW

17 of 18

I

1

E

I[-
• q

i!

B. Boehm
TRW
18 of 18

Visible Connections: The Open Architecture of the

Software through Pictures Environment

Anthony I. Wasserman

Interactive Development Environments, Inc.
150 Fourth Street, Suite 210

San Francisco, CA 94103

Summary

Interactive Development Environments has created Software through Pictures TM, an integrated

ensemble of tools, on the principles of "open architecture". A set of graphical editors support
methods for software analysis and design, including Structured Systems Analysis, Structured Design,
Entity-Relationship modeling, and User Software Engineering (USE). The tools store information in
a common data repository, called the IDE Data Dictionary, and allow users to structure their work by
systems within projects.

The editors are supported by a variety of tools for such tasks as completeness and consistency
checking of diagrams, generation of code and code skeletons, and generation of picture descriptions
in pic or PostScript TM. There are approximately 90 such support tools for the six editors, including
the IDEtool that provides a mouse-and-menu interface to the entire environment.

A fundamental decision in the design of the Software through Pictures environment was to build
upon an "open architecture" for software. Open architecture is a well-understood concept in
computer hardware, but we wanted to apply it as completely as possible to software.

We established the following criteria for our open architecture, which we named Visible
Cormectionsa'M:

(1) it should be possible to invoke every component independently; users should have information

about all of the arguments and options that can be provided to each tool;

(2) all interfaces to the tools and to their inputs and outputs should be published so that other tools

can build upon those interfaces;

(3) the database schema used by the IDE data dictionary should be visible and extensible.

(4) all files used to produce user-visible messages, such as error messages, should be visible and
modifiable;

The collection of tools and files that are present in an open architecture should be organized in such a
way that the user of the tool set is presented with a coherent view of the environment. A particularly

effective way to achieve this goal is to organize the tools and files by logical level. At least four
such levels should be present in an open architecture for a software development environment:

(1) Integrated Environment Level
This level is a starting point for the user of the environment and starts up any global
mechanisms that are needed by tools working in that environment.

(2) Tool Level(s)
One or more levels is then devoted to the various tools that exist in the environment. If tools

invoke one another, then they can often be separated with the calling tools on the "higher"
level and the called tools on the "lower" level. Various libraries and utilities used by the tools

can often be associated with a separate level.

(3) Data repository level
Tools in an integrated environment should be built upon a common data repository. This level

A. Wasserman
IDE

1 of 21

containsthe programsthat managethe datarepository,possiblya databasemanagement
system.

(4) Fileinterfacelevel
This levelcontainstextfilesusedand/orproducedby thetoolsin theenvironmentin a form
suitableforuseby othertools.Forthearchitectureto befully open,all of thesefilesshouldbe
user-readable,andshouldeitherbefreetextorafilewithawell-definedsyntax.

Weperceivedseveraladvantagesin theopenarchitectureapproach:
(1) usersalreadyhavetools,eitherlocallydevelopedor separatelyacquired,thattheywouldlike

to integratewithourtools;furthermore,theywouldbeaddingtothosetoolsin thefuture;
(2) thevisibility of flagsandargumentsfor eachcomponentprovidestheuserwith theability to

customizethetools;
(3) accessto files,messages,andschemasprovidessimilarpossibilitiesfor tool customization,

extensibility,andintegration.
Therearealsosomedisadvantagesassociatedwithanopenarchitecture,includingthefollowing:
(1) it is easyto addnewtools thatuseexistinginterfaces,butmoredifficult to modifyexisting

toolswhentheexternalinterfacemustbechanged;usersmayhavebuilt toolsthatdependon
theexistinginterfaceandevenconversionroutinesmaybeinsufficient;

(2) interfaces,suchasfile formats,messagefiles,anddatabases,mustbesavedin a form that
allowsthemto beaccuratelydescribedandeasilyprocessedbyothertools;someperformance
penaltiesmayresultfromthisrequirement;

(3) therearemanymoreaspectsof the environmentthat canbe affectedby theuserandthe
developeris unableto predictandto testall of thechangesthatmightbemadeby various
users,someof whichmightleadto systemerrors;

(4) becausetherearesomanyaspectsthatcanbeaffectedby theuser,it is moredifficult for the
userto obtaincomprehensiveknowledgeaboutthetoolsandenvironment;additionaltraining
andexperienceis neededfor a"softwareenvironmentadministrator."

TheVisible Connectionsarchitecturehasservedus andour userswell, and we regardit as a
significantcontributionto theunderstandingof integratedsoftwaredevelopmentenvironments.It
yieldsfour advantagesthat arevaluableboth to developersandusersof softwaredevelopment
environments:

(1) it allowsusercustomizationof theenvironmentto supportlocalpreferences;
(2) it allowsextensibilityof theenvironmentbybothdevelopersanduserswithminimalimpacton

theexistingbase;
(3) it encouragesthe developmentof modest-sizedsoftwarecomponentsrather than large

monolithictool systems;
(4) it canprovidemultipleinterfacesto thesamefunctions,therebyprovidingappropriatesupport

for differentclassesof users.
Softwaretool environmentsarechangingvery rapidly,with manydifferenttool builders,andit
wouldbehelpfulif varioustool buildingeffortscouldbeeffectivelycombinedwith oneanother.
Theopenarchitectureapproachcaneffectivelycontributeto thisgoal.

TMunixis a trademarkof AT&T BellLaboratories.SoftwarethroughPicturesandVisibleConnectionsare
trademarks of Interactive Development Environments, Inc. PostScript is a trademark of Adobe Systems, Inc. Ada is a
registered tradement of the U.S. Department of Defense (Ada Joint Program Office).

A. Wasserman
IDE
2 of 21

THE VIEWGRAPHMATERIALS

FOR THE

A. WASSERMANPRESENTATION FOLLOW

Key issues in software environments

• Software tool architecture

Open vs. closed
Tool interconnections

• Project database ("repository")
What is an object?
What should be saved?

• Computing support for software development
Workstations -- dedicated processing
High resolution displays -- graphics
Multiple windows

• Life cycle coverage

Physical workspace
Office environments

Staff support
Ergonomics

A. Wasserman
IDE

3 of 21

Issues in Architectures for

Software Development Environments

• Open vs. Closed Approach

• User View

• Internal communication structure

• Underlying database support

A. Wasserman
IDE

4 of 21

What is an open

software architecture?

• Multiple level access
separate invocations for different levels

m suitable for distributed environment

• All interfaces published
file formats

m database schemas

• Uses common standards
ASCII text

pic, PostScript TM languages

A. Wasserman
IDE
5 of 21

Advantages of open

software architecture

• User customization of environment

m Local options and preferences

Translation of text messages

• User extensibility of environment
m Add local tools

Add other vendors' tools

• Small components

No monolithic closed system

• Multiple interfaces to same functions

Supports different types of users

A. Wasserman
IDE

6 of 21

Multiple levels in a
software tool environment

• Integrated user view

• Software tools

• Data repository and management functions

• File interface

A. Wasserman
IDE

7 of 21

Goals of the

Software through Pictures

Environment

• Customizability

• Extensibility

• Usability

• Sharing

• Project database

• Checking

• User control

• Hardware technology

A. Wasserman
IDE
8 of 21

Software through Pictures TM

Q

Framework for integrated software development environment

m Extensive opportunities for customization
m Powerful mechanisms for extensibility

Integrated front end for environment
m Tool communication through database

Graphical editors for analysis, design, and prototyping

Support for different views of software models

Data Structure Editor

Entity Relationship Editor
Dataflow Diagram Editor
Structure Chart Editor

Transition Diagram Editor
State Transition Editor

Completeness and consistency checking of models

Multiuser support

Shared database

Diagram locking

Integrated version control
Works in heterogeneous network environment

Built upon Visible Connections TM open architecture

Published file formats

Published DBMS schema and scripts

User-modifiable message files

User-modifiable project directory structure
Visible linkage to user-selected version control system
Use of standards

A. Wasserman

IDE

9 of 21

IDE Tool Architecture

Unified user view

m IDEtool

Location independence

B Tool Information File

Open architecture

Published file formats for extensions

Published database schemas

Published individual tool invocations

User-modifiable IDEtool specification

Visible message files

Project database

IDE Data Dictionary

History information

Linked to Software through Pictures editors
Extensible schema

A. Wasserman
IDE

10 of 21

IDEtool

Startup window

Provides uniform view of environment

Takes advantage of mouse/menu/icons/windows

• Created dynamically at runtime
m Uses text file

• Provides access to all IDE tools and options
User customizable

• Easily extended for new tools

• Integrated help and error messages

• Hides command structure and underlying OS
Reduces learning time for tools
Reduces error rate for new users

A. Wasserman
IDE

11 of 21

IDEtool window regions

• Tool stripe

• Message area

Control panel
Project and system information

Version information (optional)
Control buttons

Help Mode

• Tool group area

• Command area

• Options and arguments area

• Teletype subwindow

A. Wasserman
IDE
12 of 21

Project Dlrectory: /usr/Ide/preject

System: e_lrnple _I:

Execute ,__F'-_'_ [Off Open] [Help Node]

[Diagram Utilities]

[Project Database]

[Version Control]

[IDE Data Dictionary]

[More Utilities]

[Print Dtagrmm] [Check Decomposition] [Generate 1DE/DO]

[Check IDE/DD] [Pspec for diagram] [Pspec for a slng]e Process] [P|c]

[PostScript]

Draw: _ Control Flow Dtmgram

Show: _ Control Flows All Flo_s

Symbols: Gane/Sarson -. ,

Process Inde_ Position: _ Bottom

:_:i:_:!:_:_:i:i?i:!:!:i:!:i:i:!:!:!:!:i:i:i:!:i

screendump i lpr -v -h

(14) II

J lpr -v -h

A. Wasserman
IDE
13 of 21

[Print Diagram] [Check Decomposition] [Generate IDF./DD]

[Check IDE/DD] [Pspec for diagram] [Pspec for I stngle Process] EPic]

[PostScript] II II

C_AND

•...,coont / 2 \

co::::o / _:::::::),.,
_-.::::;e--\/ J0,0.f _-_

input llne_ _g_ent 1151

irguaent 11St,

TRANSACTION LOG

A. Wasserman
IDE

14 of 21

TOOL

.':::;.1 J.::::;:,1
J_

measa_o rosponse

f_

A. Wasserman
IDE

15 of 21

Developers can modify the environment

• Processes activated by pop-up menu selections

• Processes specific to diagram node types

• Processes to be activated with one command

• Startup menu and user interface (IDEtool)

Text editors for symbol editing PDL and
"mini-spec" templates

• Pop-up menu labels

• Project database schema

• Help and error messages

• Panel button labels

• Printing interface

• Print status messages

• Tool information file

• Locations of tools, databases, message files

A. Wasserman
IDE

16 of 21

Visible and Modifiable Messages

• Error messages

• Help messages

• Menu items

• Panel items
Buttons
Sliders
Icons

• DBMS scripts for IDE Data Dictionary

• "Minispec" and "PDL" templates

• Project directory creation script

• IDEtool specification file

• Tool Information file

• Formats for output reports

• Easy modification and/or translation

A. Wasserman
IDE
17 of 21

Tool Information File

• Location independence

• Parameterized environment with initial defaults

• Global/local/personal versions

• Attribute-value pairs in text file

• Tool Information functions in IDE tools library

A. Wasserman
IDE
18 of 21

IDE Multilevel Open Architecture

I I
Ditgntm Re.h_onskip

Editor Edlt_

' I
..... "1

t Tools t

tt _ .dd l

C.Xt I_¢

U_

Project S_tem Tool
databuc rne_sages Information

IDEtool
IDEtool Spe,:

I

I I I k
Ch*_ S_c'o._¢ Diagram editor
Editor Editor EdJt_

I I

r-ci d-'1

iGcnca ation!

; To. _ls
t

-- $c

tx b---

P-'-_-or _¢ C, PHcal or Ada
skdcton declarations

RAPID/USE Proc_s Tm_
codc

I- _ r- -'3
i pic i iPostScripti
I interface I I In'_'ffacc I

so] _lc i I scpost I

o.c I [_rl:)O_t I

)tc I l ¢lsl3ost I

P_C i I tdpost I

pclmc I I pctpost I

®

---_i_--'- Po_rip_"_'_"

USE

_'ification schcma

Integrated
Environment

Level

Graphical
Editor
Level

S _IPPo_rt
Level

Tool
L_ebrary

vei

Data
Base
Level

File
Interface

Level

Published file formats

Published database schema for IDE Data Dictionary

User-modifiable messages and report formats

Diagrams stored in ASCII

Pic and/or PostScript TM output of diagrams

Tool Information File for location independence and customization

IDEtool built from textual IDEtool specification file

A. Wasserman
IDE

19 of 21

IDE Tools are Extensible

Feature Benefit

All files are stored in ASCII or are

easily convertible to ASCII

All IDE file formats

documented

are

Supports open architecture for
tools

Allows users to build additional

tools that interface easily with IDE
tools

All IDE graphics are translated

into device-independent graphics

languages: pic and PostScript

All Software through Pictures

tools are supported by a compact
and efficient relational DBMS

(Troll/USE)

IDE tools communicate through a

user-customizable tool information

file

The tool information file is built

upon the IDE tools library

Supports most popular high

resolution printers

Supports important software

engineering concept of project

database

Can be used both for project and

application database requirements

Allows users to add new relations

and attributes

IDE software is location-

independent

-- Users can modify IDE standard

environment to suit local needs

Both IDE and users can add new

attributes and values to the tool

information file as the tool set is

extended

User programs can be easily
linked to Troll/USE and

RAPID/USE

A. Wasserman
IDE
20 of 21

|

|

|

I
!

I
I

I
I

!
I

R
I
I

l
I

Integrated development environment

IDEtool startup window

Linkage to project directory/system

Mouse/menu/icon interface

Customization of default options

Extensibility of tools, commands, arguments

Integrated project database

• Integrated locking and version control

• Integrated help

• Integrated error reporting

A. Wasserman
IDE

21 of 21

PANEL #4

SOFTWARE TESTING

J. Knight, University of Virginia
N. Leveson, University of California, Irvine
A. Goel, Syracuse University

DATA DIVERSITY

AN APPROACHTO FAULT-TOLERANT SOFTWARE

Paul E. Ammann John C. Knight

Department of Computer Science

University of Virginia

Charlottesville, Virginia.

A Summary

Submitted To The Eleventh Annual Software Engineering Workshop

Goddard Space Flight Center

Greenbelt, Maryland.

J. Knight
University
I of 22

of Virginia

In an effort to provide substantial improvements in reliability of the software for crucial applications,

various methods of building fault-tolerant software have been proposed. Such software is constructed with

the assumption that faults may survive the development process, and the structure is designed to cope with

the effects of those faults at execution time.

The two best-known existing methods of building fault tolerant software are N-version programming

[1] and recovery blocks [2]. N-version programming requires the separate, independent preparation of

multiple (i.e. "N") versions of a piece of software for some application. These versions are executed in

parallel in the application environment; each receives identical inputs and each produces its version of the

required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In

practice there may be some disagreement. If this occurs, the results of the majority (assuming there is one)

are assumed to be the correct output, and this is the output used by the system.

A recovery block is a structure in which the results of an algorithm are subjected to an acceptance

test. If the results are deemed unsatisfactory, the state of the machine that existed just prior to execution of

the algorithm is restored and an alternate algorithm is executed. This process may be repeated until

satisfactory outputs are produced or the set of alternates is exhausted.

Both of these techniques rely on the availability of multiple implementations of an algorithm to allow

faults to be tolerated. This is termed design diversity because the different implementations are assumed to

contain different designs and thereby, it is hoped, different faults. Clearly, either method incurs the capital

investment required to construct the multiple implementations. N-version programming also incurs the

operational cost of executing the algorithms.

It has been observed frequently that software often fails at boundary points in the input space. A

program may work well for many input cases, survive extensive testing, and then fail on an input case

associated with a boundary condition. This condition may take the form of what seem to be an obscure set

of conditions in the input data. The boundary need not be an obvious boundary in the set of values taken

by any specific input. In fact, the boundary is usually associated with a transition in the required

processing algorithm.

J. Knight

University of Virginia
2 of 22

Thisphenomenonis wellknownandis, in fact,thebasisof a theoretical,butnotverypractical,

testingtechnique[3]. Howeverif thatmethodis notused,faultsassociatedwithboundaryconditions

frequentlyfail to showup in testingpreciselybecausetheyrequireanexactandunexpectedsetof

circumstancesthatarenotgeneratedduringtesting.It isusuallynotsufficienttogenerateatestdataset

whosevaluesaremerelyclosetothevalueswhichcausetheprogramtofail. If, duringtesting,thespecial

caseisnotgeneratedexactly,thesoftwareusuallyworkscorrectlyonthegeneratedtestcases.

Thereisa strongimplicationfromtheseobservationsthatif softwarefailsundercertainexecution

conditions,it is verylikely thata minorperturbationof thoseexecutionconditionswouldallowthe

programto work.Thisis theobservationunderlyinganewapproachtofaulttolerancethatwetermdata

diversity.

In the diverse-data approach to fault tolerance, we make use of the noted phenomenon by

reexecuting the same software that failed but with slightly different inputs. As with any form of fault

tolerance, an approach using data diversity has to be able to do detect the error. The application of data

diversity therefore involves combining the notion of executing identical software with slightly different

inputs and some scheme for error detection.

Clearly, this general approach is not suitable for all application areas. It is however well suited to

control systems in which sensors are read and actuators set. Sensors are noisy and inaccurate, and small

systematic perturbations of sensor values in order to cope with a fault would still allow the software to

generate acceptable outputs.

We have defined a program structure that takes advantage of data diversity by executing multiple

copies of a single program. The copies are executed in parallel and each receives a slightly modified form

of the input data. The results are voted in much the same way as occurs in an N-version system. We refer

to the program structure that results as an N-copy program.

We have also defined a modification of the recovery block structure that uses data diversity. We

term this approach the retry block. The concept of the retry block is quite simple. Rather than preparing

multiple alternate algorithms as is done with the recovery block, there is only one version of the algorithm.

J. Knight

University of Virginia
3 of 22

It is supplementedbyanacceptancetestthathasthesameformandpurposeastheacceptancetestina

recoveryblock.Thesemanticsoftheretryblockaretoexecutethealgorithmnormallyandfollowit with

evaluationof theacceptancetest.If theacceptancetestis passed,theretryblockis complete.If the

acceptancetestfails,thealgorithmisexecutedasecondtimebutthedataismodifiedpriorto execution.

Clearly,thisapproachcanberepeatedandtheretryblockexecutedmanytimesif desired.

Wehaveobtainedempiricalevidenceof theexpectedperformanceof datadiversitybyexamining

theeffectofminorchangestotheinputdataontheknownfaultsintheprogramsproducedfortheKnight

andLevesonexperiment[4]. Theresultsindicatethat,althoughtheperformanceofdatadiversityisquite

varied,it canproduceasubstantialreductioninfailureprobabilityatvirtuallynocost.

Thispaperwilldescribedatadiversityasanapproachtofault-tolerantsoftwareindetailandpresent

theresultsofempiricalstudies.

(1)

REFERENCES

L. Chen and A. Avizienis, "N-version programming: A fault-tolerance approach to reliability of

software operation," Digest of Papers FTCS-8: Eighth Annual International Conference on Fault

Tolerant Computing, Toulouse, France, pp. 3-9, June 1978.

(2) T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice, Prentice Hall International,

(3)

(4)

1981.

L. White and E. Cohen, "A Domain Strategy For Computer Program Testing", IEEE Trans. on

Software Engineering, Vol. SE-6, No. 3, May 1980.

J.C. Knight and N.G. Leveson, "An Experimental Evaluation Of The Assumption Of Independence

In Multi-Version Software", IEEE Trans. on Software Engineering, Vol. SE-12, No. 1, January

1986.

J. Knight

University
4 of 22

of Virginia

THE VIEWGRAPH MATERIALS

FOR THE

J. KNIGHT PRESENTATION FOLLOW

DEPARTMENT OF COMPUTERSCIENCE

DATA DIVERSITY

AN APPROACH TO SOFTWARE

FAULT TOLERANCE

Paul E. Ammann John C. Knight

Department Of Computer Science
University Of Virginia

Charlottesville, Virginia 22903

Sponsored By NASA Grant Number NAG1-605

J

J. Knight

University of Virginia
5 of 22

DEPARTMENT OF COMPUTER SCIENCE

FAULT TOLERANCE THROUGH

DESIGN DIVERSITY

• N-Version Programming:

m Multiple Implementations Of A

Specification, Developed Independently

Executed In Parallel

Outputs Voted To Select System Output

Faults Tolerated By Presumed

Differences In Design Of The Versions

• Recovery Block:

Multiple Implementations Of A

Specification, Developed Independently

Executed In Series

Output Checked By An Acceptance Test

Faults Tolerated By Presumed

Differences In Design Of The Versions

J. Knight

University of Virginia
6 of 22

DEPARTMENT OF COMPUTER SCIlglIE

FAILURE REOIONS

• Input Space For Most Programs Is Hyperspace

With Many Dimensions

• For Example:

--Twenty Floating Point Inputs

Twenty-Dimensional Space

• Sometimes Varies From Execution To Execution

• Certain Region(s) In Input Space Contain Data

Cases Causing Failure

Termed Failure Regions

• What Are Their Characteristics?

-- Shape

-- Size

-- Etc

• Seeing Some Might Provide Insight

J. Knight

University of Virginia
7 of 22

DEPARTMENTOF COMPUTER SCIENCE

CROSS SECTIONS

• Cannot Display Multi-Dimensional Spaces

• Can Display Two-Dimensional Cross Sections

• Approach:

--Systematically Vary Two Inputs Across

Range

--Keep All Other Inputs Fixed

--Determine Correctness Of Output

--Plot Correct vs Incorrect

--Plot Transitions In Output Values

• Previous Knight/Leveson Experiment:

-- Twenty-Seven Programs

-- One Million Test Cases

m Identified Faults

• Many Sections Obtained From These Faults

|

J. Knight

University of Virginia
8 of 22

[_ UVA D_Am'td_rl "OF COMPUTERSCIENC_

f

II

|

I--

J

J. Knight
University of Virginia
9 of 22

DEPARTMENTOF COMPUTER SCIENCE

1

J
J. Knight

University of Virginia
10 of 22

f

DEPARTMENT OF COMPUTER SCIENCE

J. Knight
University of Virginia
11 of 22

_ UVA

f

DEPARTMENT OF COMPUTER SCIENCE

J

J. Knight
University of Virginia
12 of 22

DEPARTMENT OF COMPUTER SCIENCE

aeeloe

,=_=oooolooe

_qooeooeo

oooeloeeooeo

meooleeeolooo

eoomoeoeoooe_

J
J. Knight
University of Virginia
13 of 22

f

J
J. Knight
University of Virginia
14 of 22

DEPARTMENT OF COMPUTER SCIENCE

/
\

l_
1_

f
f

/
/

i-
f

f

j-

J
/-

f

/
f

\
L

\
1
\

J. Knight
University of Virginia
15 of 22

DEPARTMENT OF COMPUTER SCIENCE

DATA DIVERSITY

• Programs Tend To Fail On "Special" Cases

Why?

-- Because Failure Regions Tend To Be:

• Small

• Irregularly Shaped

• Close To Output Transitions

• How Could This Observation Be Exploited?

--If Program Fails, Rerun With Slightly
Different Data.

If New Data Outside Failure Region,

Program Will Succeed.

--If Output Still Acceptable, Fault Has
Been Tolerated.

• We Term This, Fault Tolerance By

Diversity.

Data

J

J. Knight

University of Virginia
16 of 22

f

PREVIOUS WORK

• Idea Suggested Previously As Special Cases

• Gray - Tandem Corp

m Rerun Asynchronous System

Different "-'_-- "" _ +_ _+^.. ^..,,;,4,.$,Jl [,.[l_l K.,/l P- V _11 L_ %.,Jl L_;II _ ¥ qJlt,_L,_

Fault

• Shepherd et al - Cranfield Inst. Tech.

-- Run Multiple Versions With Inputs
Skewed In Time

• No Need To Rely On Chance Reordering Nor On

Data Changing With Time

• We Propose General Diversity In Data

-- Re-Express Data Algorithmically

J. Knight
University of Virginia
17 of 22

DEPARTMENT OF COMPUTER SCIENCE

I
I
|

DATA DIVERSITY USING

THE RETRY BLOCK

Execute

Algorithm

i

I Yes

Continue

No
Re-Express

Data

J

I

I

t

I

I
I

I
I
I

I

!
I
I
I

J. Knight

University of Virginia
18 of 22

I

i

DEPARTMENT OF COMPUTERSCIENCE

DATA RE-EXPRESSION

Y

X

J. Knight
University of Virginia
19 of 22

UVA
f

DEPARTMENTOF COMPUTER SCIENCE

RETRY BLOCK

RELATIVE PERFORMANCE

Retries

Displ

Fault

6.1

6.2
6.3
7.1

8.1

8.2
9.1

0.001

0.00

1.00
0.00
0.92

0.00

0.00
0.99

0.01

0.00
0.98

0.00
0.59

0.00

0.00
0.90

0.1

0.00
0.87

0.00
0.26

0.00
0.00

0.39

0.001

0.00

1.00
0.00

0.87
0.00

0.00

0.97

2

0.01

0.00
0.96

0.00
0.43

0.00

0.00
0.83

0.1

0.00
0.81

0.00
0.11

0.00
0.00

0.19

0.001

0.00

O.99
0.00

0.80
0.00

0.00
0.97

3

0.01

0.00
O.94

0.00
O.29

0.00
0.00

0.74

0.1

0.00
0.75

0.00
0.03

0.00
0.00

0.07

\ J
J. Knight
University
20 of 22

of Virginia

UVA O_A_*M_OF_OM_TE._,E_E

f

RETRY BLOCK

RELATIVE PERFORMANCE

Orrl[fFlrlrPI
1 2 3

Fault 6.2

Orll
1

H

2 3

Fault 7.1

.

0

i

m

1

i

1 1
2

Fault 9.1

i

ii 7
3

J. Knight
University of Virginia
21 of 22

DEPARTMENTOF COMPUTER SCIENCE

CONCLUSIONS

• Data Diversity Is Inexpensive

Single Implementation

Minor Costs Associated With Re-

Expression And Error Detection

• Data Diversity Works

--Empirical Study Showed:

• Some Faults Tolerated Very Well

• Some Faults Tolerated Not So Well

• Performance Widely Varied

• Data Diversity Not Universally Applicable

Some Data Cannot Be Re-Expressed

Many Control Systems Read Noisy And

Inaccurate Sensors, Data Diversity

Should Work Well

J
J. Knight
University of Virginia
22 of 22

Self- Checking Software*

Sung D. Cha
Nancy G. Leveson

Timothy J. Shimeall

Dept. of Information & Computer Science
University of California, Irvine

Irvine, CA 92717

John C. Knight

Dept. of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract

This paper presents the results of an empirical study of error detection using

self-checks. The goal of this study was not just to obtain quantitative results

but to learn more about such checks and how they might best be implemented.

This information may result in better methods for formulating checks, making

them easier to write and more effective. The analysis of the checks revealed that

there are great differences in the ability of individual programmers to design

effective checks. We found that some checks that might have been effective

failed to detect a fault because they were badly placed, and there were numerous

instances of checks signaling non-existent errors. In general, specification-based

checks alone were not as effective as combining them with code-based checks.

Goals of the Study

The ability to produce ultra-reliable computer systems in such industries as aerospace and

defense is becoming increasingly important. Although research in hardware design has yielded

computer architectures of potentially very high reliability, the state of the art in software

development is not as advanced. Current software engineering methods cannot guarantee

ultra-high software reliability, and formal verification and synthesis are not able to deal with

software of the required size and complexity.

It has been proposed that fault tolerance techniques be used to make the software func-

tion correctly despite the presence of faults in the code. It is hoped that this will provide the

*This work was supported in part by NASA under grant numbers NAG-I-511, and NAG-I-668, in part by

NSF grant DCR 8406532, and in part by MICRO grants eofuaded by the state of California, Hughes Aircraft

Co., and TRW.

N. Leveson

University of California, Irvine
1 of 14

required reliability, although empirical evidence is meager. The few real projects that have

attempted to apply software fault tolerance have used ad hoc methods, and little or no data

was collected on the effectiveness of the techniques.

We are engaged in a long-term effort to evaluate and improve software fault tolerance

techniques and to determine when and how they should be applied. Our first experiment,

which was reported at a previous Goddard Software Engineering Workshop, tested the funda-

mental assumption that software versions that are developed independently will fail in a sta-

tistically independent manner [Knight and Leveson (1086a)]. A conclusion of this experiment

is that models of reliability improvement must include the possibility of correlated failure pat-

terns among the N versions. Using the programs generated for this experiment, we have been

able to demonstrate some reliability improvement using 3-version voting although it was not

as great as might be necessary to _.chieve ultra-high reliability in practical systems. We have

also examined in detail the faults that caused correlated failures to determine their common

characteristics and to determine if it appeared that changes in the way N-version software is

developed might help to minimize them [BriUiant, Knight, and Leveson (1986b)].

Because of the limited success of the voting technique, we have attempted to examine

alternatives. The primary alternative to voting is acceptance tests or other types of self-tests

embedded in the software. A recent experiment by Anderson et. al. (1985) used recovery

blocks, but few conclusions were reached about acceptance tests outside of the fact that they

are hard to write. Information about self-checking software is important not only for fault-

tolerance, but also for more general software engineering techniques since acceptance tests are

a subset of the more general run-time assertion used in exception-handling and testing.

Although acceptance tests, assertions, and exception handling mechanisms have been included

in programming languages and systems, little information is available about the difficulty of
N. Leveson

University of California. lrvine
2 of 14

writing effective self-checks in software. More information about the use of self-checks to

detect software errors might result in better methods for formulating cehcks, making them

easier to write and more effective. Our goal in this study was not merely to proYide numerical

data, but to learn more about such checks and how they might best be implemented. The

next section describes the design of the study. Following this, the results are described and

conclusions drawn.

Experimental Design

This study uses the programs developed for a previous experiment by [Knight and Leve-

son (1986a)]. Twenty-seven versions of a program to read radar data and determine whether

an interceptor _hn,,!d be !aup,-h,_A to _hn,_t down th_ object (hereafter referred to as the

Launch Interceptor Program, or LIP) were prepared from a common specification by graduate

students and seniors at the University of Virginia and the University of California, Irvine.

Extensive efforts were made to ensure that individual students did not cooperate or exchange

information about their program designs during the development phase. The twenty-seven

LIP programs have been analyzed by running one million randomly generated test cases on

each program and locating the individual faults that were detected during the testing pro-

cedure.

In the present study, 8 students from UCI and 16 students from UVA were employed for

a week's time to instrument the programs with self-checking code in an attempt to detect

errors in the programs. Eight programs were selected from the 27 and each was randomly

assigned to three students (one from UCI and two from UVA). The students were all gradu-

ate students in computer science with an average of 2.35 years of graduate study. Professional

experience ranged from 0 to 9 years with an average of 1.7 years. None of the participants had
N. Leveson

University of California, Irvine
3 of 14

prior knowledge of the LIP program nor were they famihar with the results of the previous

experiment. There was no significant correlation found between a participant's graduate or

industrial experience and their success at writing self-checks.

Participants were provided wi,_h a brief explanation of the study along with an introduc-

tion to writing self-checks. AU also read Chapter 5 on Error Detection from a textbook on

fault tolerance [Anderson and Lee (1981)]. The participants were first asked to study the LIP

specification and to write checks using only the specification, the training materials, and any

additional references the participants desired. When they had submitted their initial checks,

they were randomly assigned a program to instrument. The participants were asked to write

checks with and without looking at the code in order to determine if there was a difference in

effectiveness between self-checks designed by a person working from the requirements alone

and those for which the person has access to and information about the program code. On the

one hand, the person working only from the requirements might provide more independence

by not being influenced by the written code. However, it could also be argued that looking at

the code will suggest different and perhaps better self-checks. Because we anticipated that the

process of examining the code might result in the participants detecting faults through code-

reading alone, participants were asked to report any such detected faults but to still attempt

to write a self-check to detect the fault.

The instrumented versions were subjected to an acceptability test (200 randomly gen-

erated test cases) as in the previous experiment. The original versions were known to run

correctly on those data, and we wanted to attempt to remove obvious faults introduced by the

self-checks. If any false alarms were raised (faults reported that did not actually exist) or if

new faults were detected which had been introduced into the program by the instrumentation,

the programs were returned to the participants for correction. Along with the instrumented

N. Leveson

University of California, Irvine
4 of 14

version, participants submitted time sheets, background profile questionnaires, and descrip-

tions of all program faults identified by code reading.

After the instrumented programs had passed the acceptability test, they were executed

using the test cases on which they had failed in the previous experiment along with 20,000 new

randomly-generated test eases to see if new faults might have been detected. Finally, the self-

checks were carefully examined and catalogued as to type of check and effectiveness.

Results

The first task of the experiment participants was to read through the program require-

ments specification and to design self-checks based solely on that specification. These self-

checks were found to fall into four groups based on the general strategy of check used:

[1] Duplication Ghecks: self-checks that duplicate the functionality of the code and compare

results. Most, but not all, of the self-checks in this group use algorithms different from

the original source code.

[2] Structural Ghecks: self-checks that verify the proper use of data structures or the proper

semantics of code. Examples include a check which verifies that the exit condition of a

loop is true immediately following the loop and a cheek that verifies that data values have

not been improperly overwritten.

[3] Reversal Gheeks: self-checks that reverse the operation performed by the code and then

see if the results are consistent with the input data.

[4] Gonsisten_ Ghecks: self-checks that determine if the results have certain properties.

Examples of consistency cheeks include range checking, arithmetic exception checking,

and type checking.

N. Leveson

University of California, Irvine
5 of 14

Table 1 shows the classification of the self-checks designed from the specification. Note that

the largest number of checks written were consistency checks followed by duplication checks.

Performance is discussed later, but Tables 3 and 5 show that a total of 33 self-checks were

completely or partially effective in detecting errors. Of these 33 effective checks, 4 (or 12%)

were formulated by the participants after looking at the requirements specification only. The

remaining 88% of the effective checks were designed after the the participants had looked at

the code. It has been suggested that acceptance tests in the recovery block structure must be

based on the specification alone [Anderson and Lee (1981)]. Our results indicate that

effectiveness of the self-checking can be improved when the specification-based (acceptance

test) checks are refined and expanded by source code reading and a thorough and systematic

instrumentation of the program. It appears that it is very useful for the instrumentor to actu-

ally see the code when writing self-checks.

#

Total

Type

Duplication Structural Reversal

149 23 76

of checks used

Consistency

218

Total
Other*

11 477

Table 1: Specification-Based Self-Checks

The second task of the participants was to instrument a particular program with self-

checks. No limitations were placed on the participants as to how much time could be spent

(although they were paid only for a 40 hour week which effectively set an upper bound t) or

how much code could be added. The amount of time reported spent ranged from 19.5 hours

to 52 hours. There was no statistically significant relationship between the number of hours

claimed to have been spent (as reported on the timesheets) by the participants and whether or

not they detected any program faults.

These self-checks were too vague to be classified
Several reported spending more than 40 hours on the project.

N. Leveson

University of California, lrvine
6 of 14

Table 2 describes the change in length in each program during instrumentatation t. Note

that there is a great variation in the amount of code added, ranging from 48 lines to 835 lines.

Participants added an average of 37 self-checks, varying from 11 to 97. Despite this variation,

there was no correlation between the total number of checks inserted by a participant and the

number of those checks that were effective at finding faults. That is, more checks did not

necessarily mean better fault detection.

Version

#
3

6

8

12

14

20

23

25

Number of Lines

original a b c

Increase

a b c

757 909 1152 805 152 395 48

643 859 887 700 216 244 57

600 1046 1356 824 446 756 224

573 1121 696 806 548 123 233

605 905 1342 712 300 737 107

533 611 1368 596 78 835 63

349 1065 417 544 716 68 195

906 1644 1016 1022 738 II0 116

Table 2: Lines of Code Added During Instrumentation

Table 3 classifies the program-based self-checks in terms of strategy used and

effectiveness. Checks are classified as effective if they correctly report the presence of an error

during execution. Two partially effective checks by participant 23a that detect an error most

(but not all) of the time are counted as effective. Ineffective checks are those that do not sig-

nal an error when one occurs during run-time in the module being checked. False alarms sig-

nal an error when no error is present. Finally, the effectiveness is classified as unknown if the

check does not signal an error and the module being tested is correct.

tin order to aid the reader in referring to previously published descriptions of the faults

found in the original LIP programs, the programs are referred to in this paper by the
numbers previously assigned in the original experiment. A single letter suffix is used (a,
b, or c) to distinguish between the three independent instrumentations of the programs.

N. Leveson

University of California, Irvine
7 of 14

Effectives Ineffectives FalseAlarms Unknowns Total
D SRC D S RCD S R C D S R C

Total 19 0 0 14!10 28 0 50 5 2 0 3 73 168 31 462 865

Table 3: Self-CheckClassification

It can be seen from Table 3 that duplication and consistency checks were about equally

effective in detecting faults although more consistency checks were used. For these programs,

structural and reversal checks were not effective, but this may have been influenced by the

types of faults that were actually in the programs. We examined the ineffective self-checks

They appear to(checks on code that contained faults but did not detect the faults) in detail.

fail due to one or more of the following reasons:

• Wrong self-check strategy - the participant used a type of self-check inappropriate to

detect the fault present in the code. For example, use of a structural check when the

fault was an inadvertent substitution of one variable for another in an expression.

• Wrong check placement - the participant placed the self-check in a location where not all

results were checked, and the fault was on a different path.

• Use of the original faulty code in the self-check - the participant falsely assumed a portion

of the code was correct and called that code as part of the self-check.

It should be noted that the placement of the checks may be as crucial as the content. This

has important implications for future research in this area and for the use of self-checking in

real applications.

It should not be assumed that a false alarm involved a fault in the self-checks. In fact,

there were cases where an error message was printed even though both the self-check and the

original code were correct. This occurred when the self-check made a calculation using a

different algorithm than the original code. Because of the inaccuracies introduced by finite

N. Lcvcson

University of California, Irvine
8 of 14

|

|

|

precision arithmetic compounded by the difference in order of operations, the self-check algo-

rithm sometimes produced a result which differed from the original by more than the allowed

tolerance. Increasing the tolerance does not necessarily solve this problem in a desirable way.

This same problem occurred in our previous experiment and is discussed in detail elsewhere

[Brilliant, Knight, and Leveson (1086a)].

Some faults were detected while the participants were reading the code. The numbers in

Table 4 refer to the numbering used to identify the individual faults in [Brilliant, Knight, and

Leveson (1986b)]. Three faults were reported that actually were not faults; the participant

misunderstood the code.

Version Fault

3a 3.3

6a
6.1

6.2

12c 12.1

20b 20.2

20c 20.2

25a
25.1

25.3

Table 5 summarizes the detected faults by how they were found.

Table 4: Faults Detected Through Code-Reading

20% of the detected

faults were detected by specification-based checks, 40% by code-reading, and 40% by code-

based checks. Note that often more than one check detected the same fault in the code-based

case, which was not true of the specification-based or code-reading faults.

Object
Spec-based Design

Faults Detected 4

Effective Checks 4

Due To

Code Reading Code-based Design
Total

Table 5: Fault Detection Classified by Instrumentation Technique

N. Leveson

University of California, Irvine
9 of 14

8 8 20

8 21 33

One final way of looking at the results of this study is to consider the number of faults

detected and introduced by the participants. Table 7 shows this information.

#

3a

3b

3c

6a

6b

6c

8a

8b

8c

12a

12b

12c

14a

14b

14c

20a

20b

20c

23a

23b

23c

25a

25b

25c

total

Already Known Faults

Present

4

3

2

2

2

Detected

1

0

0

2

0

0

2

0

0

1

0

1

0

0

0

0

1

1

Other Faults

Detected

0

0

0

Newly Added Faults

Incorrect NoAnswer

0

0

0

1

0

0

0

0

0

0

2

1

0

4

0

0

0

0

2

2 0 3 1

2 0 0 0 0

0 0 0 0

2 1 0 0

3 1 0 0 1

0 0 0 0

20 14 6 12 10

Table 6: Summary of Fault Detection

This data makes very clear the difficulty of writing effective self-checks. Of 20 previously

known faults in the programs, only 11 were detected (the 14 detected known faults in Table 6

include some multiple detections of the same fault) and only 3 of the 11 detected faults were

found by more than one of the three participants instrumenting the same program. It should

be noted, however, that the versions used in the experiment are highly reliable (an average

99.9165% success rate on the previous one million case testing), and many of the faults are

N. Leveson

University of California, lrvine
10 of 14

quite subtle. We could find no particular types of faults that were easier to detect than others.

Individual differences in ability appear to be important here.

One rather unusual case occurred. One of the new faults detected by participant 8c was

detected quite by accident. There is a previously unknown fault in the program. However,

the checking code contains the same fault. An error message is printed because the self-check

code uses a different algorithm than the original, and finite precision problems cause the self-

check to differ from the original by more than the allowed real-number tolerance. We

discovered the new fault while evaluating the error messages printed, but it was entirely by

chance. This same thing occurred in modules which did not contain a fault, and in that case

the error message was classified as a false alarm (as discussed above). Our decision was to

classify the self-check as effective because it does signal a fault when a fault does exist, but this

is a subjective choice.

It is very interesting that the self-checks detected 6 faults not previously detected by com-

parison of twenty-seven versions of the program with a gold version over a million test cases.

After closer examination of the newly discovered faults, we found that one of the reasons they

were not uncovered previously is that the strategy of test case selection did not include those

test cases that would have revealed the faults. This points out the well-known difficulty in

selecting appropriate test cases. The fact that the self-checks uncovered new faults implies

that they may have some advantages over voting alone. The faults were not detected during

the previous testing because the voting procedure could compare only the final result of com-

putations (since different algorithms were used), whereas the self-check verified the validity of

intermediate results as well. For the few cases in which it arose, the faults did not affect the

correctness of the final output. However, under different circumstances the final output would

have been incorrect. N. Leveson

University of California, Irvine
ll of 14

Although new faults were introduced through the self-checks, this is not very surprising.

It is known that changing someoneelse's program is difficult and whenever new code is added

to a program there is a possibility of introducing faults. All software fault tolerance methods

involve adding additional code of one kind or another to the basic application program. The

major causesof the new faults were an algorithmic error in a redundant computation, use of

an uninitialized variable during instrumentation, logic error, use of Heron's formula, infinite

loops added in instrumentation, out of bounds array reference, etc. The use of uninitialized

variables occurred due to incomplete program instrumentation. A participant would declare a

temporary variable to hold an intermediate value during the computation, but fail to assigna

value on somepath through the computation. A rigorous acceptability test may have detected

these faults earlier, especially those that causean abnormal termination of the program.

Conclusions

This study was not designed to provide definitive answers to any particular questions, but

instead to attempt to determine what the important questions are. This should guide us and

others in the design of further experiments, in the evaluation of current proposals, and in the

design of new methodologies. Some important questions arise as a result of this study that

need to be answered such as:

[1] There appear to be great differences in individual ability to design effective self-checks.

This suggests that more training or experience might be helpful. Our participants had lit-

tle of either although all were familiar with the use of pre- and post-conditions and asser-

tions to formally verify programs. The data suggests that it might also be interesting to

investigate the use of teams to instrument code.

[2] The programs were instrumented with self-checks in our study by participants who did

N. Leveson

University of California
12 of 14

f31

[41

[51

not write the original code. It would be interesting to compare this with instrumentation

by the original programmer. A reasonable argument could be made both ways. The ori-

ginal programmer, who presumably understands the code better, might introduce fewer

new faults and might be better able to place the checks. On the other hand, separate

instrumentors might be more likely to detect faults since they provide a new view of the

problem. More comparative data is needed here.

Placement of self-checks appeared to cause problems. Some checks that might have been

effective failed to detect a fault because they were badly placed. This implies either a

need for better decision-making and rules for placing checks or perhaps different software

design techniques to make placement easier.

Specification-based checks alone were not as effective as using them together with code-

based checks. This implies that fault tolerance may be enhanced if the alternate blocks in

a recovery block scheme, for example, are also augmented with self-checks along with the

usual acceptance test. This may also apply to pure voting schemes such as N-version pro-

gramming. A combination of fault-t01erance techniques may be more effective than any

one alone. More information is needed on how best to integrate these different proposals.

The process of writing self-checks is obviously difficult. However, there may be ways to

provide help with this process. For example, Leveson and Shimeall (1983) suggest that

safety analysis using software fault trees [Leveson and Harvey (1983)] can be used to

determine the content and the placement of the most important self-checks. Other types

of application or program analysis may also be of assistance. Finally, empirical data about

common fault types may be important in learning how to instrument code with self-

checks.

N. Leveson

University of California, Irvine
13 of 14

Many promising research topics, empirical studies, and experiments are suggested by

results of this study that may lead to better procedures for software error detection.

the

Acknowledgements

The authors are pleased to acknowledge the efforts of the experiment participants: David

W. Aha, Torn Bair, Jack Beusmans, Bryan Catron, Harry S. Delugach, Siamak Emadi, Lori

Fitch, W. Andrew Frye, Joe Gresh, Randy Jones, James R. Kipps, Faith Leifman, Costa Liva-

das, Jerry Marco, David A. Montuori, John Palesis, Nancy Pomicter, Mary Theresa Roberson,

Karen Ruhleder, Brenda Gates Spielman, YeUamraju Venkata Srinivas, Tim Strayer, Gerald

Reed Taylor HI, and Raymond R. Wagner, Jr.

CI

[1] T. Anderson, P.A. Barrett, D.N. HalliweU, and M.R. Moulding, "An Evaluation of

Software Fault Tolerance in a Practical System", Digest of Papers FTCS-15: Fifteenth

Annual Symposium on Fault-Tolerant Computing, pp. 140-145, June 1985.

[2] T. Anderson, and P.A. Lee, Fault Tolerance: Principles and Practice Englewood Cliffs,

NJ, Prentice-Hall Intl., 1981.

[6] S.S. Brilliant, J.C. Knight, and N.G. Leveson, "The Consistent Comparison Problem in

N-Version Software", submitted for publication, 1986a.

[7] S.S. Brilliant, J.C. Knight, and N.G. Leveson, "Analysis of Faults in an N-Version

Software Experiment", submitted for publication, 1986b.

[13] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the Assumption of

Independence in Multi-Version Programming", IEEE Transaction on Software Engineer-

ing, pp. 96-109, January 1986a.

[15] N.G. Leveson, and P.R. Harvey, "Analyzing Software Safety", IEEE Transactions on

Software Engineering, Vol. SE-9, No. 5, pp 569-579, 1983.

[16] N.G. Leveson, and T.J. Shimeall, "Safety Assertions for Process-Control Systems", Digest

of Papers F/'CS-13: Thirteenth Annual Symposium on Fault-Tolerant Computing, pp

236-240, June 1983.
N. Leveson

University of California, lrvine
14 of 14

I
I

I
I
I
I

I

I
I
I

I
I

I
I
!

I
I
I
I

AN EXPERIMENTAL COHPARISON OF FORTRAN AND

ADA PROGRAM RI_LIABILITY

Amrit L. Goel I

Joseph Cavano 2

F. Youwakim Farhat I

iTom Little

Presented at the Eleventh NASA/SEL Annual

Software Engineering Workshop NASA/GSFC

(;reenbelt, Maryland

December 3, 1986

ISyracuse University, Syracuse, NY 1.3244

2RAI)C, GAFB, Rome, NY 13441

This work was supported in part by SCEEE and

the Rome Air I)evelopment Center, C_AFB

A. Goel

Syracuse University
1 of 26

This report documents an experiment investil;atinp, the eFFect

of Fortran and Ada languages oll program reliability. The experi-

mental design employed here was a 2 3 full factorial design, i.e.,

a design in three variables, each at two levels. The variables

and their levels were language (Fortran and Ada), programmer

experience (intermediate and advanced) and application type

(scientific and text processing). Due to experimental and resource

constraints, this study concentrated on a 22 factorial desi?.n in

two variables, language and programmer experience. Some of the

experimental points in this design were replicated to determine

precision of the effect of language and experience on program

reliability. The scientific problem used here was the Launch

Interceptor Program (l,IP), a simple but realistic, anti-missile

system which has been used elsewhere in connection with software

testing: and fault-tolerance research. The second prol_lem used was

the well-known text-formatting pros, ram. The programmers were

grad_)ate students in computer engineering with varyin_ de_,,rees of

experience in programming languages.

The programmers developed their own designs from given

specifications and did independent compilations and unit testing.

Data on these activities were collected for comparison purposes.

The function testing of each LIP version was done after removing

errors detected durin_ unit testing and COml_ilation. Fifty-four

test cases for this purpose were developed manually using a hybrid

of struct,re-dependent and structure-indel_endent testing techniques.

A. Goel

Syracuse University
2 of 26

!

I

I

I

I

I
I

I
I
I

I

In this paper we present the results of an experiment

investigating the effect of Fortran and Ada languages on program

reliability. The experimental design employed here was a 22

full factorial design, i.e., a design in two variables, each at

two levels. The variables and their levels were language (Fortran

and Ada) and programmer experience (intermediate and advanced).

Some of the experimental points in this design were replicated

to determine precision of the effects on program reliability.

The scientific problem used here was the Launch Interceptor

Program (LIP), a simple but realistic, anti-missile system which

has been used elsewhere in connection with software testing and

fault-tolerance research. The second problem used was the well-

known text-formatting program. The programmers were graduate

students in computer engineering with varying degrees of

experience in programming languages.

The programmers developed their own designs from given

specifications and did independent compilations and unit testing.

Data on these activities were collected for comparison purposes.

The function testing of each LIP version was done after removing

errors detected during unit testing and compilation. Fifty-four

test cases for this purpose were developed manually usin_ a

hybrid of structure-dependent and structure-independent testing

techniques.

A. Goel

Syracuse University
3 of 26

Since it was not feasible to determine the oracle for the LIP

programs, a variation of majority voting technique was used to

determine correct values. Specifically, elements of the conditions

met vector, the CMVE's, were compared from each version and the

majority of five was taken to be the correct values. This technique

proved to be very useful and efficient in testing and debugging.

Also, this method was successful in providing a very high

structural and functional coverage of the programs.

Errors revealed by the above fifty-four test cases were

removed one-at-a-time and the remaining test cases were run on

these incrementally corrected versions. The plots of cumulative

error symptoms versus test case number seem to follow homogenous

Poisson processes in each case and provide some useful insights

into the error symptom occurrence behavior.

Operational testing of the LIP programs was done after

removing errors found during function testing using three sets

of test cases. The first set of 120 tests was developed manually

using the same hybrid techniques as for function testing. The

other two sets of i00 and I000 tests were based on random testing.

Data on errors were collected during development and unit

testing, function testing and operational testing. This included

numbers, causes and types of error and times taken to isolate and

fix them. Reliability comparison between Ada and Fortran programs

were based on the total number of errors, as well as on errors

found during development and functional testing, functional and

A. Goel

Syracuse University
4 of 26

operational testing and operational testing. Some comparisons

were also based on error density, the number of errors per I00

non-comment lines of code. Further analyses were based on

error causes (design, coding and programmer) as well as on

error types (control, data and interface). Following are the

main results of these analyses.

The number of errors in the Aria programs were about 70%

less than those in Fortran when comparisons were based on errors

found during all phases. If errors during development and unit

testing were excluded, i.e., if only functional and operational

testing data were considered, the Ada programs had about 78%

less errors. Similar differences were found for data based on

error causes and error types.

Using error density during development and functional testing

as a measure, the average difference between Ada and Fortran

programs was 5.7 errors per i00 non-comment lines with a standard

deviation of 1.35 units. The effect of programmers' experience

was to reduce error density by 2.1 with a standard deviation of

1.35 units. If data during functional and operational testing

alone is considered, then the Ada programs had 3.20 less errors

per I00 non-comment lines. The effect of experience during these

phases was not statistically significant.

A. Goel

Syracuse University
5 of 26

Summarized above are the most important results of this

study. Even though they are based primarily on implementations

of only one problem, they do indicate that there is a statistically

significant evidence in support of higher reliability of Ada

programs. The extent of this difference, however, is likely to

vary from one application to another as well as across different

development environments.

A. Goel

Syracuse University
6 of 26

THE VIEWGRAPHMATERIALS

FOR THE

A. GOEL PRESENTATIONFOLLOW

STUDY OB.JECT IVE

Assess the effect of Fortran and Ada languages
on Program Reliability in a controlled Experimental
Env ironment

Specifically, determine the number of errors

detected during development and unit testing,
function testing, and operational testing

Also, analyze detected errors for causes,

symptoms, types, etc.

The observed numbers are used to assess the

relative reliability of the programs developed
in these languages

A. Goel

Syracuse University
7 of 26

EXPERIMENTAL DESIGN

3
A 2 FULL FACTORIAL DESIGN

FACTORS

Language

Programmer

Experience

LEVELS

Fortran

Intermediate

ADA

Advanced

Application

Type

Scientific Text Processing

A. Goel

Syracuse University
8 of 26

II
I

I
g

A 2]3 FULL FACTORIAL DESIGN

Advof,ced

ProgrQmmer

Intermedicte'

(

/
/

/

F'ortrorl "_
Language

--Ado-

A. Goel

Syracuse
9 of 26

University

LAUNCtt INTERCEPTOR PROGRAM

Simple, but realistic anti-missile system.

Studied elsewhere in connection with fault-

tolerant software research.

• Program reads inputs which represent radar

reflections, checks whether some prespecified

conditions are met and determines if the

reflections come from an object that is a

threat and if yes, signals a launch decision.

Knight and Leveson, IEEE-TSE, January 1986.

A. Goel

Syracuse University
10 of 26

SCttEHATIC OF LIP

A. Goel

Syracuse University
11 of 26

EXAMPLE

Launch Intercepter Conditions

LIC 1 : There exists at least one set of two

consecutive data points that are a

distance greater than LENGTH1 apart

LIC ii: There exists at least one set of three

data points separated by exactly E PTS
and F PTS...that are the vertices _f a

triangle with area greater than AREAl

A. Goel

Syracuse University
12 of 26

] " I
LIP

S pecificotions ,

1 ,
i Top Level Design I

_°r'r°°Pr°gr°mslIAO°Pr°gr°ms,2 3 , 2 3

• Functional Testing

• Operational Testing

,O Design and
Code metrics

0 Development and

Unit Testing
-- Errors Data
-- Effort Data

• Test Metrics

• Test Effort Data

• Debugging Data

• Error Data

- Numbers

-Causes

-Types

A. Goel

Syracuse
13 of 26

University

EXPERIMENTAL APPROAClt: LIP

Developed six versions in Fortran and ADA

- Two each by intermediate programmers

One each by advanced programmers

Collected data on errors and effort during

development.

Unit testing - some structure based, some

function based.

LIP testing 54 test cases derived from

specifications and ADA Code.

Further testing on 'corrected' versions

(120 test cases).

• Random testing on 'corrected' versions

(i00 + I000 test cases).

Analsis of errors: numbers, causes, type, etc.

to assess reliability.

A. Goel

Syracuse University
14 of 26

Some Hetrics for the LIP Programs

F1 F2 A1 A2 F3 A3

Source Lines 696 446 691 624 526 851

Non-Comment 550 442 632 498 439 600
Lines

Executable 212 246 214 184 174 137
Statements

Packages _ _ 6 4 e 3

Subprograms 21 19 30 23 28 29

Procedures _ _ 4 4 _ i

Subroutines 13 19 e _ 28

Tasks * _ 15 15 _ 0

Functions 8 0 ii 4 0 28

Exceptions _ _ 2 0 _ 2

Raise _ _ 0 0 * 3

A. Goel

Syracuse University
15 of 26

RELIABILITY ASSESSMENT

Based on an analysis of errors found

during development and testing.

Errors analyzed by

- Numbers

- Causes

- Symptoms

- Types

A. Goel

Syracuse University
16 of 26

SUMMARY OF NUMBER OF ERRORS

FOUND DURING VARIOUS PIIASES

F1

Dev. &Unit 24

Testing

LIP 16

Testing

F2 A1 -A2 F3 A3

28 8 7 I0 4

18 5 4 15 4

Subtotal 40 46 13 iI 25

OT

120 TC i*

i00 Random 2

i000 Random 3*

1 0 0

0 1 0

0 0 0

1

0

0

Total 4

OT
1 1 0 0

Total 44

(All Phases)

47 14 ii 27 8

(* one common error)

A. Goel

Syracuse University
17 of 26

TOTAL ERRORS AND ERROR DENSITIES

INTERblEDIATE F A % DIFFERENCE

Average 45.5 12.5 72.5
Number

Average 9.1 2.1 76.9

Density

ADVANCED

Number 27.0 8.0 70.4

Density 5.7 1.3 77.2

A. Goel

Syracuse University
18 of 26

5O
FL2

2o

iO

(J

0 I I
DUT FT OT

50

4O

3O

2O

ALl

I0 L2_

O.
DUT FT OT

A. Goel

Syracuse University
19 of 26

) FL 3

o 20

_o

z G _ ! I

BUT FT OT

A. Goel

Syracuse University
20 of 26

LIP AND OPERATIONAL TESTING

INTE_IEDIATE F A

Average
Number

19.5 5.0

% DIFFERENCE

74.4

Average

Density

4.07 0.88 78.4

A hXTA KTP_

Number 17.0 4.0 76.5

Density 3.88 0.67 82.7

A. Goel

Syracuse University
21 of 26

3¢

ERROR CLASSIFICATION

Phase : Design, Coding

Cause Previous fix,

Programmer error

Symptoms: Infinte loop

Type Computation, Interface

Basili & Perricone, Selby

A. Goel

Syracuse University
22 of 26

DESIGN AND CODING ERRORS

INTERMEDIATE

Design

Coding

F A

13.5 5.0

29.5 7.0

% DIFFERENCE

62.9

76.3

ADVANCED

Design

Coding

i0.0 3.0

15.0 5.0

70.0

66.7

A. Goel

Syracuse University
23 of 26

ERROR CAUSES: LIP TESTING

F1 F2 A1 A2 F3 A3

Pro -

grammer
Error 4 I0 0 1 0

Previous

Fix 2 0 0 0 2 0

Incorrect

Imple-
entation

of Specs.

6 4 2 3 3

Clerical 3 4 2 0 2 1

Program.

Language
Misunder-

standing

i 0 0 0 0

Total 16 18 4 4 15

A. Goel

Syracuse University
24 of 26

|

|

|

ERROR SYMP'FOt, IS: LIP TESTING

FI F2 A1 A2 F3 A3

Overflow/
Underflow 1 4 0 1

Infinite

Loop 0 0 0 1

Wrong
Result 15 14 5 2 15

Total 16 18 15 4 15 .

A. Goel

Syracuse University
25 of 26

ERROR TYPES: LIP TESTING

F1 F2 A1 A2 F3 A3

Computation 4

Control 6

Interface 5

6 2 1 5 2

4 0 2 4 0

1 0 0 1 2

Data 1 7 3 i 0

Total 16 18 5 4 15 4

A. Goel

Syracuse University
26 of 26

APPENDIXA

ATTENDEES OF THE 1986 SOFTWARE ENGINEERING WORKSHOP

AGRESTI, BILL W.
ALDRIDGE, JACK

ANDERSON, JOYCE
ANDREW, DON A.
ANTALEK, RICHARD W.
ARMSTRONG, MARY
ARNOLD, ROBERT
ARTHUR, JAMES
ASKEW, MICHAEL B.
AYERS, EVERETT
BAILEY, JOHN
BAILIN, SID
BARNES, BILL P.
BARRETT, CURTISS C.
BASILI, VIC
BIGWOOD, DOUGLAS W.
BILLINGS, DIANE
BLIZZARD, MICHAEL
BLUM, BRUCE
BOEHM, BARRY
BOND, JACK
BOND, LISA T.
BOON, DAVE
BOOTH, ERIC
BRANDT, KIM
BREDESON, MIMI
BROPHY, CAROLYN
BROWN, KEITH L.
BROWN, ROBERT G.
BUCHANAN, GEORGE A.
BUELL, JOHN
BURLEY, RICK
CAIN, BETTY
CALLENDER, DAVID
CAPRIOTTI, DAVID
CARD, DAVE
CARLSON, JOHN P.
CARLSON, ROBERT
CARRIO, MIGUEL
CARSON, JOHN H.
CARTER, HAROLD
CARY, JOHN
CHASSON, MARGARET C.
CHEN, CHI-FANG
CHENOWETH, HALSEY B.
CHEUVRONT, STEVE
CHMURA, LOUIS J.
CHU, RICHARD
CHUNG, ANDREW
CHURCH, VIC
CISNEY, LEE
CLAPP, JUDITH A.

COMPUTER SCIENCES CORPORATION
McDONNELL-DOUGLAS ASTRONAUTICS CO.
COMARCO, INC.
FINANCIAL MANAGEMENT SERVICE
SOCIAL SECURITY ADMINISTRATION
liT RESEARCH INSTITUTE
MITRE CORP.
VIRGINIA TECH UNIV.
GTE CORPORATION
ARINC RESEARCH CORP.

CTA

NASA/GSFC
NASA/GSFC
UNIVERSITY OF MARYLAND
U.S. DEPT. OF AGRICULTURE
FEDERAL COMMUNICATIONS COMMISSION
LOCKHEED EMSCO (PB-9)
APPLIED PHYSICS LAB
TRW
U.S. DEPT. OF DEFENSE

NAVAL SURFACE WEAPONS CENTER
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.

NASA/GSFC
SPACE TELESCOPE SCIENCE INST.
UNIVERSITY OF MARYLAND

IBM CORP.
IITRI

COMPUTER SCIENCES CORP.
NASA/GSFC
DEPT. OF TREASURY

NASA/JSC
BURROUGHS CORP.
COMPUTER SCIENCES CORP.
OAO CORP.

NASA/ARC
TELEDYNE BROWN ENGINEERING
GEORGE WASHINGTON UNIVERSITY
MARTIN MARIETTA CORP.
GEORGE WASHINGTON UNIVERSITY
IBM CORP.

WESTINGHOUSE ELECTRIC COMPANY
COMPUTER SCIENCES CORP.
NAVAL RESEARCH LAB.
MARTIN MARIETTA AEROSPACE
FAA TECHNICAL CENTER
COMPUTER SCIENCES CORPORATION
NASA/GSFC
THE MITRE CORPORATION

A-1

CLARK, DAVID
CLEMENTS,PAUL
COHEN,VIC
COLLINS,MICHAELD.
COOK,JOHNF.
COOK,LAURA
CORNEL,ROGER
COTNOIR,DONNA
COUCHOUD,CARL
CROTEAU,LEE
CYPRYCH,GENE
DAILY, JACK
DAVIS, ANN
DECKER,WILLIAM
DELONG,SUZANNE
DEMEESTER,RICHARD H.
DEVANE,ARYNE
DICKSON,CHARLESH.
DISKIN, DAVID
DONNELLY, LAURIE
DOUGLAS, FRANK J.
DUVALL, LORRAINE
DYMOND, KEN
EBERHART, H. O.
ELLIOTT, DEAN F.
ELLIS, WALTER
ELOVITZ, HONEY S.
ESKER, LINDA
EVANGELIST, MICHAEL
FABISZAK, CATHY
FANG, AI
FATH, RICHARD
FINDLEE, JOHN
FISHTAHLER, LARRY
FORMANAK, KATHLEEN
FORSYTHE, RON
FRAHM, MARY J.
FRANKEL, SHEILA
FRANKLIN, JUDE
FREUND, AL
FRIEDMANN, DAN
GAFFNEY, JOHN
GARRICK, JOE
GERSTNER, DIETWALD
GETTIER, CHARLES
GIFFIN, GEOFF
GODFREY, SALLY
GOEDDEKE, VINCENT
GOEL, AMR1T
GOGIA, B. K.
GOLDBERG, ALEXANDER
GOLDEN, JOHN R.
GORDON, LLAYDON
GORDON, MARC D.

SYSTEMS DEVELOPMENT CORP.
NAVAL RESEARCH LAB
EPA
MARTIN MARIETTA CORP.

NASA/GSFC
GSC
U.S. EPA
COMPUTER SCIENCES CORP.
SOCIAL SECURITY ADMINISTRATION
NYMA
COMPUTER SCIENCES CORP.
NAVAL RESEARCH LAB
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
GENERAL ELECTRIC
FCC
USDA-AR S-ASRI-HYDROLOGY
U.S. CENSUS BUREAU
LOCKHEED
PROFESSIONAL SOFTWARE SERVICES
DUVALL COMPUTER TECHNOLOGIES, INC.
NATIONAL BUREAU OF STANDARDS

NASA/GSFC
IBM/FEDERAL SYSTEM DIVISION
SOFTWARE A & E
COMPUTER SCIENCES CORP.
MCC
NASA/GSFC

NASA/HQ
FCC AMD-IM
DEPT. OF TREASURY
COMPUTER SCIENCES CORP.
MARTIN MARIETTA-ATC DIVISION

NASA/WALLOPS FLIGHT FACILITY

NATIONAL BUREAU OF STANDARDS

PRC/GIS
ALLEN BRADELY CO.

IBM CORPORATION-FSD
NASA/GSFC
NASA/HQ
liT RESEARCH INSTITUTE
JET PROPULSION LAB

NASA/GSFC
NASA/MARSHALL SPACE FLIGHT CENTER
SYRACUSE UNIVERSITY
MARTIN MARIETTA AEROSPACE
MARTIN MARIETTA CORP.
EASTMAN KODAK CO.
CSC
MCI CORP.

A-2

GREEN,DANIEL
GREEN, SCOTT
GREEN,STAN
GREENBERG,DIANA
GREGOR,ROBERTM.
HALTERMAN,KAREN
HARDY, ROBERT
HEASTY,RICHARD
HECK,JOANN L.
HELLER, GERRY
HENRY, SALLIE
HENRY, STEPHANlE
HILL, DONNA E.
HILLMER, DOUG
HOLMES,BARBARA
HORMBY,TOM
HOUSER,WALTER
HULL, LARRY
HUTTMAN,GREG
HYBERTSON,DUANE
IDELSON,NORMAN L.
ITKIN, DAVID
JACKSON,GEORGE
JAWORSKI,ALLAN
JELETIC,JIM
JOESTING,DAVID
JONES,CHRISTOPHER
JOO, BOK G.
JORDAN, LEON
JUN, LINDA
KARDATZKE, OWEN
KATZ, BETH
KAUSCH,CHUCK
KELLY, K1M R.
KESSINGER,RICHARD
KESTER,RUSH
KLENK, JOHN
KLITSCH,GERALDN.
KNIGHT, JOHN
KOWALCHACK,BONNIE
KOZIUK, FRANK
KRAMER,NANCY
KRUSZEWSKI,GEORGE
KUHN, RICK
KURIHARA, TOM
LABAW,BRUCE
LAMAS, NIKI
LANGDON,WOODY
LAVALLEE, DAVlD
LAZARO, JOE
LEADER, KAREN
LEBAIR, BILL
LEDBETTER,JOANM.
LEVESON,NANCY G.

IITSG/GAIO
NASA/GSFC
liT RESEARCHINSTITUTE
U.S. EPA
SOFTWAREA & E
OAO CORPORATION
FCC
COMPUTER SCIENCES CORP.

RMS TECHNOLOGIES, IN('.
COMPUTER SCIENCES CORP.
DEPARTMENT OF COMPUTER SCIENCE
NASA/GSFC
NSWC

U.S. CENSUS BUREAU
GSC NASA/GSFC
JOHN HOPKINS UNIVERSITY
GSA/IRMSKMPP
NASA/GSFC
CENSUS BUREAU
LOCKHEED
APPLIED PHYSICS LAB
UNIVERSITY OF MARYLAND
ACTION

FORD AEROSPACE
NASA/GSFC
BENDIX FIELD ENGINEERING CORP.
liT RESEARCH INSTITUTE
UNIVERSITY OF MARYLAND
COMPUTER SCIENCES CORP.

NASA/GSFC
NASA/GSF("
UNIVERSITY OF MARYLAND
NASA/GSF("
IBM ('ORI _.

SOFTF_Ctt, IN('.
GTE GOVERNMENT SYSTEMS
THE MITRE CORPORATION
COMPUTER SCIENCES CORP.
UNIVERSITY OF VIRGINIA
UNIVERSITY OF MARYLAND
liT RESEARCH INSTITUTE

KETRON, lNC.
NATIONAL BUREAU OF STANDARDS

U.S. DEPT. OF TRANSPORTATION
NAVAL RESEAR('H LAB
CENSUS BUREAU
COMPUTER S('II_NCES ('ORP.
FORD AEROSPACE CO.

lIT RESEARCH INSTITUTE

NASA/GSFC
USDA-OIRM-ATSD
UNIVERSITY OF CALIFORNIA

A-3

LEVINE, DAVID R.
LEWIS,BLAIR
LEWIS,JAMESM.
LIN, CHI Y.
LIPHAN, BILL
LIU, JEAN C.
LIVELY, MARY
LLOYD, MICHAELR.
LOESH,BOB
LORD, YVONNE
LUCAS,JANICE
LUCAS,TODD R.
LUCZAK, RAY W.
LUPTON,GLENN
LURIE, BRIAN
LYTTON, VICTORH.
MAJORS,SHEILA
MALAY, ROBERTM.
MARCINIAK, JOHN
MARTIN, RONALD
McCOMAS,DAVE
McENEARNEY,MARK
McGARRY,FRANK E.
McGARRY,MARY ANN
McGOVERN,DAN
McKENZIE,MERLE
McMAHON,SUE
MEDUIN,JENNIFERB.
MEYER, MARGARET
MOHRMAN,CARL C.
MONTGOMERY,AL
MORGAN,CAROL
MUCKEL,JERRY
MULCAHY, KEVIN
MULLEN, PETER
MUNDY, CORNELIAC.
MURPHY,CYNTHIA
MURPHY,ROBERT
MYERS,PHILIP I.
NANCE,RICHARDE.
NAPKORI, JOE
NELSON,ROBERT
NGUYEN, BAO T.
NICHOLAS,DAVID A.
NOONAN,ROBERT
NORCIO,TONY F.
NORMAN,KENT
OBREBSKI,KRZYSZTOF
OEI, CHARLES
OHLMACHER,JANE
ONG,JOHN
OSBORNE,WILMA
OVERDECK,BETSEYL.
OWENS,ANTHONY

INTERMETRICS,INC.
JET PROPULSIONLAB
U.S. CENSUSBUREAU
JPL
DEPT.OF TREASURY
COMPUTERSCIENCESCORP.
U.S. EPA
GENERALDYNAMICS
SYSTEMTECHNOLOGYINSTITUTE
WESTINGHOUSEDEFENSE& ELEC. CENTER
DEPT.OF TREASURY

COMPUTERSCIENCESCORP.
DIGITAL EQUIPMENTCORP.
BURROUGHSCORP.
U.S. DEPT.OF AGRICULTURE
CSC

MARCINIAK & ASSOCIATES
FCC
NASA/GSFC
BUREAUOF LABOR STATISTICS
NASA/GSFC
IITRI-ECAC/U.S.NAVAL STATION
FAA TECHNICALCENTER
JET PROPULSIONLAB
JET PROPULSIONLAB
NASA/GSFC
U.S. ARMY OFFICE OF TEST & EVAL AGENCY
MARTIN MARIETTA ATC
NYMA
liT RESEARCH INSTITUTE
COMPUTER SCIENCES CORP.
U.S. EPA
MARTIN MARIETTA AEROSPACE
NAVAL SURFACE WEAPONS CENTER
THE MITRE CORP.
NASA/GSFC
COMPUTER SCIENCES CORP.
VIRGINIA TECH UNIV.
SYSTEM DEVELOPMENT CORP.

NASA/GSFC
HQ USAF/SCTT
JET PROPULSION LAB
COLLEGE OF WILLIAM AND MARY
NAVAL RESEARCH LAB
UNIVERSITY OF MARYLAND
PROGRAM RESOURCES, INC.

SDC/BURROUGHS
SOCIAL SECURITY ADM.

NASA/GSFC
NATIONAL BUREAU OF STANDARDS
COMPUTER SCIENCES CORP.
FCC

A-4

|
|

|

PAGE, JERRY
PALMER, JAMES G.
PALMQUIST, SALLY
PAPPAS, EUGENE
PARKER, DON
PASSALACQUA, TERESA
PAVNICA, PAUL
PERKINS, DOROTHY
PERKINS, TOBY
PERRY, SANDRA
PETER, MICHAEL
PETERSEN, JANE B.
PIETRAS, JOHN
PIXTON, JERRY
PLETT, MICHAEL E.
PRABHAKAR, N. D.
PRESTON, DAVID
PRINCE, ANDY
PUTNEY, BARBARA
QUANN, EILEEN S.
QUIMBY, KELVIN
QUINN, JEAN T.
RAY, SUSAN
REDWiNE, SAM
REED, KARL
RHOADS, TOM
RICHARDSON, EDDIE
ROBBINS, DON
ROBERTS, REBEKAH
ROBINSON, RICHARD
ROHR, JOHN A.
ROMBACH, DIETER H.
ROSENFELD, ROCHELLE
ROWE, DENNIS
ROY, DANIEL M.
RUFFNER, ALAN
SAMII, MINA V.
SANDBORGH, RAYMOND E.
SAWYER, DON M.
SCALISE, GARY
SCHUBERT, KATHY
SCHULTHEISZ, ROBERT
SCHULTZ, DAVID
SCHWARTZ, DAVID
SCIULLO, ED
SCOTT, EUGENE H.
SCOTT, LEIGHTON
SEIDEWlTZ, ED
SEMMEL, RALPH
SERAFIN, PAUL
SHEN, VINCENT Y.
SHI, LEON
SHI, XIAOHONG
SHIEK, ELVIRA

COMPUTER SCIENCES CORP.
JOHNS HOPKINS APPLIED PHYSICS LAB
liT RESEARCH INSTITUTE
lit RESEARCH INSTITUTE
NASA/GSFC
CENSUS BUREAU

NASA/GSFC
SPERRY CORP.
CSC

GENERAL SERVICES ADMINISTRATION
AUTOMETRIC, INC.
MITRE CORP.
SYSTEMS DEVELOPMENT CORP.
COMPUTER SCIENCES CORP.
AT & T BELL LABORATORIES
liT RESEARCH INSTITUTE
PRC SYSTEMS SERVICES
NASA/GSFC
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
NAVAL RESEARCH LABORATORY
NASA/GSFC
INSTITUTE FOR DEFENSE _N_L_ _
UNIVERSITY OF MARYLAND
COMPUTER SCIENCES CORP.
FCC
NSA/CSS
PRC
THE MITRE CORPORATION
JET PROPULSION LAB
UNIVERSITY OF MARYLAND
GTE GOVERNMENT SYSTEMS
MITRE CORPORATION
CENTURY COMPUTING
MCI CORP.
COMPUTER SCIENCES CORP.
UNISYS CORP.

NASA/GSFC
DEPARTMENT OF TRANSPORTATION

NASA/LERC
WEDLARS III

COMPUTER SCIENCES CORP.
BENDIX
NATIONAL LIBRARY OF MEDICINE
COMPUTER SCIENCES CORPORATION
NSA

NASA/GSFC
APL
EG&G
MCC
COMPUTER SCIENCES CORP.
UNIVERSITY OF MARYLAND

NASA/GSFC

A-5

SHOAN,WENDY
SMITH, DAN
SMITH,NANCY
SMITH,PAT
SMITH,PEGM.
SNYDER,GLENN
SO,MARIA
SOLOMON,DAVID
SOLOWAY,ELLIOT
SPAFFORD,EUGENEH.
SPEIZER,HOWARDM.
SPENCE,BAILEY
SPIEGEL,DOUG
SPIEGEL,MITCHELL
STARK, MICHAEL
STAUFFER,MIKE
STEINBACHER,JODY
STOKES,ED
STONE,DAWNF.
STOTTS,DAVID
STUART,WILLIAM
SUDDITH, STEVE
SWEENY,JOHNNY
SWEET,BILL
SZULEWSKI,PAUL
TALLEY, RONALD D.
TARDIF, MICHELLE
TASAKI, KEIJI K.
TASKY, DEBORAHL.
TAUSWORTHE,ROBERTC.
TENG, BRENDA
THOMAS,JOEH.
THOMPSON,JOHNT.
TREASURE,DAVE
TRIOUFIS, KOSTOS
TSAGOS,DINO
TURNROSE,BARRY
URI, CAROL
USHER,GEORGE
VALETT, JON
VERNACCHIO,AL
VOIGT, SUSAN
VOLTZ, SUSAN
_¢ALDO,KARENE.
WALLACE, DOLORES
WANG, SHOUL
WASSERMAN,ANTHONYI.
WATSON,STAN
WEISS,DAVID
WENDE,CHARLES
WERLING,RICHARD
WILLIAMS, MIKE
WONG,YEE
WOOD,RICHARD

NASA/GSFC
FORD AEROSPACE& COMM.CORP.
NASA/GSFC
NSWC
NASA HEADQUARTERS
COMPUTERSCIENCESCORP.
NASA/GSFC
COMPUTERSCIENCESCORP.
YALE UNIVERSITY
SOFTWAREENGINEERINGRESEARCHCENTER
U.S. CENSUSBUREAU
COMPUTERSCIENCESCORP.
NASA/GSFC
GTE SYSTEMS
NASA/GSFC
GENERALELECTRICCO.
JET PROPULSIONLAB
COMPUTERSCIENCESCORP.
COMPUTERSCIENCESCORP.
UNIVERSITY OF MARYLAND
BUREAU OF CENSUS
GSC
DEPT.OF TREASURY
SOFTWAREENGINEERINGINSTITUTE
C.S.DRAPERLABS

NASA/GSFC
NASA/GSFC
U.S. CENSUSBUREAU
JPL
COMPUTERSCIENCESCORP.
NASA/MSFC
FORD AEROSPACE
CENSUSBUREAU

COMPUTERSCIENCESCORP.
FCC AMD-IM
TREASURY-FMS-IS
NASA/GSFC
NASA/GSFC
NASA/LARC
NASA/GSFC
liT RESEARCHINSTITUTE
NATIONAL BUREAU OF STANDARDS

INTERACTIVEDEVELOPMENTENVIRONMENTS,INC.
NASA/GSFC
U.S. CONGRESS
NASA/GSFC

NYMA
COMPUTERSCIENCESCORP.
COMPUTERSCIENCESCORP.

A-6

|
i

i

WU, LIQUN
WU, SABINA L.
WU, YEN
YANG, CHAO
YEE, MARY
YOUMAN, CHARLES
ZAMANI, DORY
ZAVELER, SAUL
ZELKOWlTZ, MARV
ZYGIELBAUM, ART

UNIVERSITY OF MARYLAND
IITRI
IITRI

NASA/GSFC
LOGICON, INC.
THE MITRE CORPORATION
ACTION
U.S. AIR FORCE
DEPT. OF COMPUTER SCIENCES
JET PROPULSION LAB

A-7

APPENDIXB

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-

neering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-

SEL-77-004, GSFC NAVPAK Design Specifications Languages

Stud_, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engi-

neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program

(SAP) User's Guide (Revision 3), W. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, The Software Engineering Laboratory: Relation-

ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

gram Design Language (PDL) in the Goddard Space Flight Cen-

ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September

1979

B-I

SEL-79-005, Proceedings From the Fourth Summer Software En-

gineerin@ Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Language-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer Systems/

Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineerin 9 Laboratory Programmer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analysis of
Chan@e Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-

neerin 9 Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineerin@

Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Engineerinq Laboratory (SEL) Data Base

Organization and User's Guide Revision], P. Lo and

D. Wyckoff, July 1983

B-2

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Engineering Laboratory (SEL) Document

Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Engineering Laboratory (SEL) Data Base

Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software

Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Engineering Laboratory (SEL) Data Base

Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers:
ume i, July 1982

Vol-

SEL-82-007, Proceedings From the Seventh Annual Software

Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-I02, FORTRAN Static Source Code Analyzer Program

(SAP) System Description (Revision i), W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

B-3

SEL-82-406, Annotated Bibliography of Software Enqineering

Laboratory Literature, D. N. Card, Q. L. Jordan, and

F. E. McGarry, November 1986

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers:

ume II, November 1983

Vol-

SEL-83-006, Monitoring Software Development Through Dynamic

Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-

gineering Workshop, November 1983

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Configuration Management and Control: Policies

and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the

Software Engineering Laboratory (SEL), W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engi-

neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-

niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,

April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From

the Gamma Ray Observatory Ada Development Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers:

Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing,

CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software

Engineering Workshop, December 1985

B-4

l
i

I
i
i

i
i

SEL-86-001, Programmer's Handbook for Flight Dynamics Soft-

ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-

vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers:
Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October
1986

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the

Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,

"Designing With Ada for Satellite Simulation: A Case Study,"

Proceedings of the First International Symposium on Ada for

the NASA S_ace Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Pro@ram Transformation and Pro-

9ramming Environments. New York: Springer-Verlag, 1984

iBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1981

IBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Computer Technology,

January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineering. New York: IEEE Computer
Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software

Methodology," Proceedings of the First Pan-Pacific Computer

Conference, September 1985

iBasili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-

lems?", Journal of Systems and Software, February 1981,

vol. 2, no. 1

B-5

iBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL," Pro-

ceedings of the International Computer Software and Applica-
tions Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environment, University

of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," Communications of

the ACM, January 1984, vol. 27, no. 1

iBasili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"

Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-

ity Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"

Proceedings of the IEEE/MITRE Expert Systems in Government

Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedings of the Workshop

on Quantitative Software Models for Reliability, Complexity,

and Cost. New York: IEEE Computer Society Press, 1979

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-

ysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use

of an Environments's Characteristic Software Metric Set,"

Proceedings of the Eighth International Conference on Soft-

ware Engineering. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comparin 9 the Effective-

ness of Software Testing Strategies, University of Maryland,

Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," IEEE Transactions on

Software Engineering, July 1986

B-6

2Basili, V.R., and D. M. Weiss, A Methodology for Collect-

ing Valid Software Engineerin @ Data, University of Maryland,

Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-

ing Valid Software Engineering Data," IEEE Transactions on

Software Engineering , November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedings of the

Fifteenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedings of the Software Life

Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering Laboratory," Proceedings of the Second Soft-

ware Life Cycle Management Workshop, August 1978

iBasili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedings of the Third Interna-

tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

3Card, D. N., "A Software Technology Evaluation Program,"

Annais do XVIII Congresso Nacional de Informatica, October
1985

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-

cal Study of Software Design Practices," IEEE Transactions

on Software Engineering, February 1986

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," Proceedings of the Eighth Interna-

tional Conference on Software Engineering. New York: IEEE

Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceed-

ings of the Fifth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and

Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Engineering Notes, July 1986

B-7

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedin@s of the

Seventh International Computer Software and Applications

Conference. New York: IEEE Computer Society Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES

for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also

designated SEL-77-005)

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the

Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedings of the Hawaiian Inter-

national Conference on System Sciences, January 1985

3page "A Practical Ex-, G., F. E. McGarry, and D. N. Card,

perience With Independent Verification and Validation,"

Proceedings of the Eighth International Computer Software

and Applications Conference, November 1984

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process

Using Structural Coverage," Proceedings of the Ei@hth Inter-

national Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

4Seidewitz, E., and M. Stark, "Towards a General Object-

Oriented Software Development Methodology," Proceedings of

the First International Symposium on Ada for the NASA Space
Station, June 1986

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for

Software, Special Publication, May 1981

Turner, C.," G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-

cation, April 1981

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software

Engineering, February 1985

iZelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedings of the Twelfth Conference on

the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

B-8

!

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedings of the Soft-

ware Life Cycle Management Workshop, September 1977

|
NOTES:

1This article also appears in SEL-82-004, Collected Soft-

ware Enqineerin 9 Papers: Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Engineering Papers: Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Soft-

ware Engineering Papers: Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-

ware Engineerin 9 Papers: Volume IV, November 1986.

B-9

